AI人工智能领域,文心一言的智能娱乐应用

AI人工智能领域,文心一言的智能娱乐应用

关键词:AI人工智能、文心一言、智能娱乐应用、自然语言处理、多模态交互

摘要:本文聚焦于AI人工智能领域中文心一言的智能娱乐应用。首先介绍了研究的背景、目的、预期读者等内容,接着阐述文心一言在智能娱乐应用中的核心概念与联系,深入剖析其核心算法原理和具体操作步骤,用数学模型和公式进行理论支撑。通过项目实战案例展示文心一言在智能娱乐方面的实际应用,包括开发环境搭建、代码实现与解读。探讨了文心一言智能娱乐应用的实际场景,推荐了相关的学习资源、开发工具和论文著作。最后总结其未来发展趋势与挑战,并解答常见问题,提供扩展阅读和参考资料,旨在全面深入地展现文心一言在智能娱乐领域的应用价值和潜力。

1. 背景介绍

1.1 目的和范围

随着人工智能技术的飞速发展,其在娱乐领域的应用日益广泛。文心一言作为百度研发的大型语言模型,具备强大的自然语言处理能力和多模态交互能力。本研究的目的在于深入探讨文心一言在智能娱乐应用方面的具体表现、优势以及潜在的发展方向。范围涵盖了文心一言在游戏、影视、音乐、文学创作等多个娱乐细分领域的应用,分析其如何为用户带来新颖、个性化的娱乐体验。

1.2 预期读者

本文预期读者包括人工智能领域的研究人员、开发者、娱乐行业从业者、对智能娱乐应用感兴趣的科技爱好者以及相关专业的学生。研究人员可以从本文中获取文心一言在智能娱乐应用方面的最新研究动态和技术思路;开发者能够借鉴其中的算法原理和代码实现,开发出更具创新性的娱乐应用;娱乐行业从业者可以了解如何利用文心一言提升娱乐产品的质量和用户体验;科技爱好者可以通过本文对文心一言的智能娱乐应用有更直观的认识;学生则可以将其作为学习人工智能在娱乐领域应用的参考资料。

1.3 文档结构概述

本文将按照以下结构展开:首先介绍文心一言智能娱乐应用的核心概念与联系,帮助读者建立基本的理论框架;接着详细阐述其核心算法原理和具体操作步骤,让读者了解背后的技术实现;通过数学模型和公式进一步解释其工作原理,并举例说明;进行项目实战,展示文心一言在智能娱乐应用中的实际代码案例和详细解释;探讨文心一言在不同娱乐场景中的实际应用;推荐相关的学习资源、开发工具和论文著作;最后总结文心一言智能娱乐应用的未来发展趋势与挑战,解答常见问题,并提供扩展阅读和参考资料。

1.4 术语表

1.4.1 核心术语定义
  • 文心一言:百度研发的知识增强大语言模型,能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。
  • 智能娱乐应用:利用人工智能技术为用户提供娱乐服务的应用程序或系统,包括但不限于游戏、影视、音乐、文学创作等领域。
  • 自然语言处理(NLP):计算机科学与人工智能领域中的一个重要方向,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
  • 多模态交互:指系统通过多种模态(如文本、语音、图像、视频等)与用户进行交互,以提供更加自然、丰富和高效的交互体验。
1.4.2 相关概念解释
  • 知识图谱:一种基于图的数据结构,由节点(实体)和边(关系)组成,用于表示现实世界中各种实体之间的关系。文心一言利用知识图谱增强其知识理解和推理能力。
  • 深度学习:机器学习的一个分支领域,它通过构建具有多个层次的神经网络模型,自动从大量数据中学习特征和模式,从而实现对数据的分类、预测等任务。文心一言基于深度学习技术进行训练和优化。
1.4.3 缩略词列表
  • NLP:自然语言处理(Natural Language Processing)
  • API:应用程序编程接口(Application Programming Interface)

2. 核心概念与联系

2.1 文心一言的基本原理

文心一言基于Transformer架构,这是一种在自然语言处理领域广泛应用的深度学习模型。Transformer架构采用了多头自注意力机制,能够捕捉文本中不同位置之间的依赖关系,从而更好地理解文本的语义。

文心一言的训练过程分为预训练和微调两个阶段。在预训练阶段,模型在大规模的文本数据上进行无监督学习,学习语言的通用模式和知识。在微调阶段,模型在特定的任务数据集上进行有监督学习,以适应不同的应用场景。

2.2 文心一言与智能娱乐的联系

文心一言为智能娱乐应用提供了强大的自然语言处理能力,使得娱乐应用能够实现更加自然、智能的交互。例如,在游戏中,文心一言可以作为智能NPC(非玩家角色),与玩家进行自然流畅的对话,增加游戏的沉浸感和趣味性;在影视创作中,文心一言可以协助编剧生成剧情大纲、角色台词等,提高创作效率和质量。

同时,智能娱乐应用也为文心一言提供了丰富的应用场景和数据反馈。通过在不同的娱乐场景中应用文心一言,可以收集用户的交互数据,进一步优化文心一言的性能和效果。

2.3 文心一言智能娱乐应用的架构示意图

用户
文心一言API
智能娱乐应用
游戏
影视创作
音乐创作
文学创作
智能NPC交互
剧情生成
歌词创作
故事续写

该架构示意图展示了用户通过文心一言API与智能娱乐应用进行交互的过程。智能娱乐应用包括游戏、影视创作、音乐创作、文学创作等多个领域,每个领域又有具体的应用场景,如游戏中的智能NPC交互、影视创作中的剧情生成等。

3. 核心算法原理 & 具体操作步骤

3.1 核心算法原理 - Transformer架构

Transformer架构主要由编码器(Encoder)和解码器(Decoder)组成。编码器负责将输入的文本序列转换为一系列的特征表示,解码器则根据编码器的输出和之前生成的部分序列生成下一个词。

以下是Transformer架构中多头自注意力机制的Python代码实现:

import torch
import torch.nn as nn
import torch.nn.functional as F

class MultiHeadAttention(nn.Module):
    def __init__(self, embed_size, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.embed_size = embed_size
        self.num_heads = num_heads
        self.head_dim = embed_size // num_heads

        assert (
            self.head_dim * num_heads == embed_size
        ), "Embedding size needs to be divisible by number of heads"

        self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
        self.fc_out = nn.Linear(num_heads * self.head_dim, embed_size)

    def forward(self, values, keys, query, mask):
        N = query.shape[0]
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]

        # Split the embedding into self.num_heads different pieces
        values = values.reshape(N, value_len, self.num_heads, self.head_dim)
        keys = keys.reshape(N, key_len, self.num_heads, self.head_dim)
        queries = query.reshape(N, query_len, self.num_heads, self.head_dim)

        values = self.values(values)
        keys = self.keys(keys)
        queries = self.queries(queries)

        # Scaled dot-product attention
        energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
        if mask is not None:
            energy = energy.masked_fill(mask == 0, float("-1e20"))

        attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)

        out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
            N, query_len, self.num_heads * self.head_dim
        )

        out = self.fc_out(out)
        return out

3.2 具体操作步骤 - 使用文心一言API进行智能娱乐开发

3.2.1 获取API密钥

首先,开发者需要在百度云平台注册账号,并申请文心一言API的使用权限,获取API密钥。

3.2.2 安装SDK

可以使用Python的requests库来调用文心一言API,也可以安装百度提供的SDK。以下是使用requests库的示例代码:

import requests

# 设置API的URL和API密钥
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions"
access_token = "your_access_token"

# 设置请求头
headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {access_token}"
}

# 设置请求参数
data = {
    "messages": [
        {
            "role": "user",
            "content": "请为我创作一个科幻小说的开头"
        }
    ]
}

# 发送请求
response = requests.post(url, headers=headers, json=data)

# 解析响应
if response.status_code == 200:
    result = response.json()
    print(result["result"])
else:
    print(f"请求失败,状态码:{response.status_code}")
3.2.3 处理响应结果

根据API的响应结果,开发者可以将其应用到具体的智能娱乐场景中。例如,在文学创作中,可以将生成的文本作为故事的一部分;在游戏中,可以将生成的对话作为NPC的回复。

4. 数学模型和公式 & 详细讲解 & 举例说明

4.1 自注意力机制的数学模型

自注意力机制是Transformer架构的核心,其数学模型可以表示为:

A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

其中, Q Q Q 是查询矩阵, K K K 是键矩阵, V V V 是值矩阵, d k d_k dk 是键向量的维度。

详细讲解:

  • Q K T QK^T QKT 计算查询向量与键向量之间的相似度得分。
  • Q K T d k \frac{QK^T}{\sqrt{d_k}} dk QKT 对相似度得分进行缩放,以避免梯度消失或爆炸问题。
  • s o f t m a x softmax softmax 函数将相似度得分转换为概率分布,表示每个键向量对查询向量的重要性。
  • 最后,将概率分布与值矩阵相乘,得到注意力输出。

举例说明:
假设我们有一个输入序列 x = [ x 1 , x 2 , x 3 ] x = [x_1, x_2, x_3] x=[x1,x2,x3],每个 x i x_i xi 是一个 d d d 维的向量。我们将 x x x 分别投影到查询、键和值空间,得到 Q = [ q 1 , q 2 , q 3 ] Q = [q_1, q_2, q_3] Q=[q1,q2,q3] K = [ k 1 , k 2 , k 3 ] K = [k_1, k_2, k_3] K=[k1,k2,k3] V = [ v 1 , v 2 , v 3 ] V = [v_1, v_2, v_3] V=[v1,v2,v3]

q 1 q_1 q1 为例,计算其与所有键向量的相似度得分:

s c o r e s = [ q 1 T k 1 , q 1 T k 2 , q 1 T k 3 ] scores = [q_1^Tk_1, q_1^Tk_2, q_1^Tk_3] scores=[q1Tk1,q1Tk2,q1Tk3]

然后进行缩放和 s o f t m a x softmax softmax 操作:

p r o b a b i l i t i e s = s o f t m a x ( s c o r e s d k ) probabilities = softmax(\frac{scores}{\sqrt{d_k}}) probabilities=softmax(dk scores)

最后,计算注意力输出:

o u t p u t 1 = p r o b a b i l i t i e s 1 v 1 + p r o b a b i l i t i e s 2 v 2 + p r o b a b i l i t i e s 3 v 3 output_1 = probabilities_1v_1 + probabilities_2v_2 + probabilities_3v_3 output1=probabilities1v1+probabilities2v2+probabilities3v3

4.2 多头自注意力机制的数学模型

多头自注意力机制是将自注意力机制并行应用多次,然后将结果拼接起来。其数学模型可以表示为:

M u l t i H e a d ( Q , K , V ) = C o n c a t ( h e a d 1 , h e a d 2 , . . . , h e a d h ) W O MultiHead(Q, K, V) = Concat(head_1, head_2, ..., head_h)W^O MultiHead(Q,K,V)=Concat(head1,head2,...,headh)WO

其中, h e a d i = A t t e n t i o n ( Q W i Q , K W i K , V W i V ) head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) headi=Attention(QWiQ,KWiK,VWiV) W i Q W_i^Q WiQ W i K W_i^K WiK W i V W_i^V WiV 是投影矩阵, W O W^O WO 是输出投影矩阵。

详细讲解:

  • 首先,将输入的查询、键和值矩阵分别投影到 h h h 个不同的子空间,得到 h h h 组查询、键和值矩阵。
  • 对每组查询、键和值矩阵应用自注意力机制,得到 h h h 个注意力输出。
  • 将这 h h h 个注意力输出拼接起来,然后通过一个线性变换得到最终的多头自注意力输出。

举例说明:
假设我们有 h = 2 h = 2 h=2 个头,输入的查询、键和值矩阵分别为 Q Q Q K K K V V V

首先,将 Q Q Q K K K V V V 分别投影到两个子空间:

Q 1 = Q W 1 Q Q_1 = QW_1^Q Q1=QW1Q
Q 2 = Q W 2 Q Q_2 = QW_2^Q Q2=QW2Q
K 1 = K W 1 K K_1 = KW_1^K K1=KW1K
K 2 = K W 2 K K_2 = KW_2^K K2=KW2K
V 1 = V W 1 V V_1 = VW_1^V V1=VW1V
V 2 = V W 2 V V_2 = VW_2^V V2=VW2V

然后,分别计算两个头的注意力输出:

h e a d 1 = A t t e n t i o n ( Q 1 , K 1 , V 1 ) head_1 = Attention(Q_1, K_1, V_1) head1=Attention(Q1,K1,V1)
h e a d 2 = A t t e n t i o n ( Q 2 , K 2 , V 2 ) head_2 = Attention(Q_2, K_2, V_2) head2=Attention(Q2,K2,V2)

最后,将两个头的注意力输出拼接起来,并通过线性变换得到最终的多头自注意力输出:

M u l t i H e a d ( Q , K , V ) = C o n c a t ( h e a d 1 , h e a d 2 ) W O MultiHead(Q, K, V) = Concat(head_1, head_2)W^O MultiHead(Q,K,V)=Concat(head1,head2)WO

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

5.1.1 安装Python

首先,需要安装Python 3.6及以上版本。可以从Python官方网站(https://www.python.org/downloads/)下载并安装。

5.1.2 安装必要的库

使用pip命令安装requests库,用于调用文心一言API:

pip install requests
5.1.3 配置API密钥

将从百度云平台获取的API密钥保存到一个配置文件中,例如config.py

ACCESS_TOKEN = "your_access_token"

5.2 源代码详细实现和代码解读

以下是一个使用文心一言API进行智能故事创作的Python代码示例:

import requests
import config

# 设置API的URL
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions"

# 设置请求头
headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {config.ACCESS_TOKEN}"
}

def generate_story(prompt):
    # 设置请求参数
    data = {
        "messages": [
            {
                "role": "user",
                "content": prompt
            }
        ]
    }

    # 发送请求
    response = requests.post(url, headers=headers, json=data)

    # 解析响应
    if response.status_code == 200:
        result = response.json()
        return result["result"]
    else:
        print(f"请求失败,状态码:{response.status_code}")
        return None

if __name__ == "__main__":
    prompt = "请创作一个关于机器人冒险的故事开头"
    story = generate_story(prompt)
    if story:
        print(story)

代码解读:

  • 导入requests库和配置文件config.py
  • 设置文心一言API的URL和请求头。
  • 定义generate_story函数,该函数接受一个提示信息prompt作为参数,构造请求参数并发送请求。
  • 解析API的响应结果,如果请求成功,返回生成的故事内容;否则,打印错误信息。
  • if __name__ == "__main__":语句块中,设置一个提示信息,调用generate_story函数生成故事,并打印结果。

5.3 代码解读与分析

5.3.1 优点
  • 代码结构简单,易于理解和维护。
  • 使用requests库调用API,无需复杂的SDK安装和配置。
  • 可以根据不同的提示信息生成多样化的故事内容。
5.3.2 缺点
  • 没有对API的响应结果进行错误处理和异常情况处理,可能会导致程序崩溃。
  • 没有考虑API的调用频率限制,可能会因为频繁调用而被封禁。
5.3.3 改进建议
  • 增加错误处理和异常情况处理代码,例如重试机制、日志记录等。
  • 对API的调用频率进行控制,例如设置调用间隔时间。

6. 实际应用场景

6.1 游戏领域

6.1.1 智能NPC交互

在游戏中,文心一言可以作为智能NPC与玩家进行自然流畅的对话。智能NPC可以根据玩家的输入生成个性化的回复,增加游戏的沉浸感和趣味性。例如,在角色扮演游戏中,玩家可以与NPC进行任务交流、情感互动等。

6.1.2 剧情生成

文心一言可以根据游戏的设定和玩家的选择生成动态的剧情。游戏开发者可以提供一些基本的剧情框架和规则,文心一言可以根据这些信息生成具体的剧情内容,使游戏剧情更加丰富多样。

6.2 影视创作领域

6.2.1 剧情大纲生成

编剧可以使用文心一言生成剧情大纲。编剧只需提供一些基本的主题、人物和情节元素,文心一言可以根据这些信息生成详细的剧情大纲,为编剧提供创作灵感和参考。

6.2.2 角色台词创作

文心一言可以根据角色的性格特点和剧情场景创作角色的台词。在影视拍摄过程中,演员可以根据文心一言生成的台词进行表演,提高拍摄效率和质量。

6.3 音乐创作领域

6.3.1 歌词创作

音乐人可以使用文心一言创作歌词。只需提供歌曲的主题、风格和情感倾向等信息,文心一言可以生成富有创意和感染力的歌词,为音乐创作提供新的思路。

6.3.2 音乐推荐

文心一言可以根据用户的音乐偏好和历史播放记录,为用户推荐个性化的音乐。通过分析用户的描述和音乐特征,文心一言可以精准地推荐符合用户口味的歌曲。

6.4 文学创作领域

6.4.1 故事续写

作者在创作过程中遇到灵感枯竭时,可以使用文心一言进行故事续写。作者提供故事的开头和一些关键信息,文心一言可以根据这些内容生成后续的故事情节,帮助作者完成创作。

6.4.2 诗歌创作

文心一言可以根据用户输入的主题、意境等要求创作诗歌。无论是古典诗词还是现代诗歌,文心一言都可以生成具有一定艺术水准的作品,为诗歌爱好者提供创作帮助。

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《深度学习》(Deep Learning):由Ian Goodfellow、Yoshua Bengio和Aaron Courville撰写,是深度学习领域的经典教材,介绍了深度学习的基本概念、算法和应用。
  • 《自然语言处理入门》:作者何晗,本书系统地介绍了自然语言处理的基础知识和常用技术,适合初学者入门。
  • 《Python自然语言处理》(Natural Language Processing with Python):由Steven Bird、Ewan Klein和Edward Loper编写,通过Python代码示例介绍了自然语言处理的各种技术和工具。
7.1.2 在线课程
  • Coursera上的“深度学习专项课程”(Deep Learning Specialization):由Andrew Ng教授授课,包括神经网络和深度学习、改善深层神经网络、结构化机器学习项目、卷积神经网络、序列模型等五个课程,全面介绍了深度学习的理论和实践。
  • 百度AI Studio上的“文心一言开发者实战营”:专门针对文心一言的开发和应用进行培训,提供了丰富的案例和实践项目。
7.1.3 技术博客和网站
  • 百度AI开放平台(https://ai.baidu.com/):提供了文心一言的官方文档、API接口和开发示例,是学习和使用文心一言的重要资源。
  • 机器之心(https://www.almosthuman.cn/):专注于人工智能领域的技术和应用,提供了大量的技术文章和行业动态。
  • 开源中国(https://www.oschina.net/):国内知名的开源技术社区,有很多关于人工智能和自然语言处理的技术分享和讨论。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • PyCharm:一款专业的Python集成开发环境,提供了代码编辑、调试、版本控制等功能,适合Python开发者使用。
  • Visual Studio Code:一款轻量级的代码编辑器,支持多种编程语言和插件扩展,具有丰富的功能和良好的用户体验。
7.2.2 调试和性能分析工具
  • PDB:Python自带的调试工具,可以帮助开发者定位和解决代码中的问题。
  • TensorBoard:TensorFlow提供的可视化工具,可以用于可视化模型的训练过程和性能指标。
7.2.3 相关框架和库
  • PyTorch:一个开源的深度学习框架,提供了丰富的神经网络模型和工具,支持GPU加速计算。
  • Hugging Face Transformers:一个用于自然语言处理的开源库,提供了大量的预训练模型和工具,方便开发者进行自然语言处理任务。

7.3 相关论文著作推荐

7.3.1 经典论文
  • 《Attention Is All You Need》:提出了Transformer架构,是自然语言处理领域的经典论文。
  • 《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》:介绍了BERT模型,推动了自然语言处理技术的发展。
7.3.2 最新研究成果
  • 关注顶级学术会议如ACL(Association for Computational Linguistics)、EMNLP(Conference on Empirical Methods in Natural Language Processing)等的最新论文,了解自然语言处理领域的最新研究动态。
7.3.3 应用案例分析
  • 百度官方发布的关于文心一言在不同领域的应用案例分析报告,了解文心一言的实际应用效果和经验。

8. 总结:未来发展趋势与挑战

8.1 未来发展趋势

8.1.1 多模态融合

未来,文心一言的智能娱乐应用将更加注重多模态融合。除了文本交互,还将结合语音、图像、视频等多种模态,为用户提供更加丰富、沉浸式的娱乐体验。例如,在游戏中实现语音对话和虚拟形象交互,在影视创作中实现图像和视频的生成等。

8.1.2 个性化定制

随着用户对娱乐体验的个性化需求不断增加,文心一言将能够根据用户的兴趣、偏好和行为数据,为用户提供更加个性化的娱乐内容和服务。例如,在音乐推荐中,根据用户的音乐品味和情绪状态推荐合适的歌曲;在游戏中,根据用户的游戏风格和进度生成个性化的剧情和任务。

8.1.3 跨领域应用

文心一言的智能娱乐应用将不再局限于传统的娱乐领域,而是会与教育、医疗、旅游等其他领域进行深度融合。例如,在教育领域,利用文心一言开发智能学习助手,提供个性化的学习方案和辅导;在医疗领域,开发智能健康咨询服务,为患者提供专业的医疗建议。

8.2 挑战

8.2.1 数据隐私和安全问题

随着文心一言在智能娱乐应用中的广泛使用,会收集和处理大量的用户数据。如何保障用户数据的隐私和安全,防止数据泄露和滥用,是一个亟待解决的问题。

8.2.2 模型性能和效率问题

虽然文心一言已经取得了很好的性能,但在处理大规模数据和复杂任务时,仍然存在性能和效率方面的挑战。如何进一步优化模型结构和算法,提高模型的处理速度和准确性,是未来需要研究的方向。

8.2.3 伦理和法律问题

智能娱乐应用的发展也带来了一系列伦理和法律问题。例如,生成的内容可能存在虚假信息、侵权等问题,如何规范智能娱乐应用的使用,确保其符合伦理和法律要求,是需要解决的重要问题。

9. 附录:常见问题与解答

9.1 文心一言API的调用频率有限制吗?

是的,文心一言API的调用频率有限制。具体的限制规则可以参考百度AI开放平台的官方文档。为了避免因频繁调用而被封禁,建议开发者合理控制调用频率。

9.2 如何提高文心一言生成内容的质量?

可以通过以下方法提高文心一言生成内容的质量:

  • 提供清晰、明确的提示信息,让文心一言更好地理解用户的需求。
  • 对生成的内容进行筛选和修改,结合自己的创意和专业知识进行优化。
  • 不断调整提示信息的参数和格式,尝试不同的表达方式,找到最适合的生成方式。

9.3 文心一言可以用于商业应用吗?

可以,文心一言支持商业应用。开发者需要在百度云平台申请商业使用权限,并遵守相关的使用协议和规定。

10. 扩展阅读 & 参考资料

10.1 扩展阅读

  • 《人工智能时代的娱乐变革》:探讨了人工智能技术对娱乐行业的影响和变革,为读者提供了更广阔的视野。
  • 《智能娱乐应用的创新与发展》:介绍了智能娱乐应用的最新创新成果和发展趋势,对文心一言的智能娱乐应用有一定的参考价值。

10.2 参考资料

  • 百度AI开放平台官方文档(https://ai.baidu.com/)
  • 《深度学习》(Ian Goodfellow、Yoshua Bengio和Aaron Courville著)
  • 《自然语言处理入门》(何晗著)
  • 《Python自然语言处理》(Steven Bird、Ewan Klein和Edward Loper著)
  • 《Attention Is All You Need》(Vaswani等著)
  • 《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》(Devlin等著)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值