Spring Data R2DBC 为后端开发带来的变革与机遇

Spring Data R2DBC 为后端开发带来的变革与机遇

关键词:Spring Data R2DBC、后端开发、响应式编程、数据库访问、变革与机遇

摘要:本文深入探讨了 Spring Data R2DBC 为后端开发带来的变革与机遇。首先介绍了 Spring Data R2DBC 的背景,包括其目的、适用读者、文档结构和相关术语。接着阐述了核心概念与联系,通过文本示意图和 Mermaid 流程图展示其架构。详细讲解了核心算法原理和具体操作步骤,结合 Python 源代码进行说明。同时给出了数学模型和公式,并举例解释。通过项目实战,展示了代码实际案例并进行详细解读。分析了其实际应用场景,推荐了相关的学习资源、开发工具框架和论文著作。最后总结了未来发展趋势与挑战,提供了常见问题解答和扩展阅读参考资料,帮助开发者全面了解 Spring Data R2DBC 并应用于实际项目中。

1. 背景介绍

1.1 目的和范围

在当今的后端开发领域,对于高并发、高性能系统的需求日益增长。传统的数据库访问方式在处理大量并发请求时往往会遇到性能瓶颈,因为它们是基于阻塞 I/O 模型的。Spring Data R2DBC(Reactive Relational Database Connectivity)的出现就是为了解决这些问题,它提供了一种响应式的数据库访问方式,能够更好地适应现代应用的需求。

本文的范围涵盖了 Spring Data R2DBC 的核心概念、算法原理、实际应用场景等方面,旨在帮助开发者全面了解 Spring Data R2DBC,并掌握如何在后端开发中使用它来提升系统的性能和可扩展性。

1.2 预期读者

本文的预期读者主要包括后端开发人员、软件架构师和对响应式编程和数据库访问技术感兴趣的技术爱好者。无论是初学者还是有一定经验的开发者,都可以从本文中获取关于 Spring Data R2DBC 的有价值信息。

1.3 文档结构概述

本文将按照以下结构进行组织:

  1. 背景介绍:介绍 Spring Data R2DBC 的目的、适用读者和文档结构。
  2. 核心概念与联系:阐述 Spring Data R2DBC 的核心概念和架构,通过示意图和流程图进行展示。
  3. 核心算法原理 & 具体操作步骤:详细讲解 Spring Data R2DBC 的核心算法原理,并给出具体的操作步骤,结合 Python 源代码进行说明。
  4. 数学模型和公式 & 详细讲解 & 举例说明:给出 Spring Data R2DBC 相关的数学模型和公式,并进行详细讲解和举例说明。
  5. 项目实战:代码实际案例和详细解释说明:通过一个实际项目案例,展示 Spring Data R2DBC 的具体应用,并对代码进行详细解读。
  6. 实际应用场景:分析 Spring Data R2DBC 在不同实际场景中的应用。
  7. 工具和资源推荐:推荐相关的学习资源、开发工具框架和论文著作。
  8. 总结:未来发展趋势与挑战:总结 Spring Data R2DBC 的未来发展趋势和面临的挑战。
  9. 附录:常见问题与解答:提供常见问题的解答。
  10. 扩展阅读 & 参考资料:提供扩展阅读的内容和参考资料。

1.4 术语表

1.4.1 核心术语定义
  • Spring Data R2DBC:Spring 框架提供的用于响应式数据库访问的模块,基于 R2DBC 规范,允许开发者以响应式的方式与关系型数据库进行交互。
  • 响应式编程:一种面向数据流和变化传播的编程范式,通过异步和非阻塞的方式处理数据,能够更好地应对高并发场景。
  • R2DBC:Reactive Relational Database Connectivity,一种响应式的关系型数据库连接规范,定义了响应式数据库驱动的接口。
  • Mono:Project Reactor 中的一个类,表示包含 0 或 1 个元素的响应式流。
  • Flux:Project Reactor 中的一个类,表示包含 0 到 N 个元素的响应式流。
1.4.2 相关概念解释
  • 阻塞 I/O:在传统的数据库访问中,当一个线程发起一个 I/O 请求时,该线程会被阻塞,直到 I/O 操作完成。这会导致线程资源的浪费,尤其是在高并发场景下。
  • 非阻塞 I/O:在非阻塞 I/O 模型中,当一个线程发起一个 I/O 请求时,该线程不会被阻塞,可以继续执行其他任务。当 I/O 操作完成时,会通过回调或事件通知线程。
  • 响应式流:一种异步和非阻塞的数据流处理方式,支持背压机制,能够根据下游消费者的处理能力来调节数据的发送速度。
1.4.3 缩略词列表
  • R2DBC:Reactive Relational Database Connectivity
  • API:Application Programming Interface
  • SQL:Structured Query Language

2. 核心概念与联系

核心概念原理

Spring Data R2DBC 基于 R2DBC 规范,提供了一种响应式的数据库访问方式。它利用 Project Reactor 库来处理响应式流,通过 Mono 和 Flux 类来表示异步操作的结果。

在传统的数据库访问中,开发者通常使用 JDBC(Java Database Connectivity)来与数据库进行交互。JDBC 是基于阻塞 I/O 模型的,当一个线程发起一个数据库查询时,该线程会被阻塞,直到查询结果返回。而 Spring Data R2DBC 采用了非阻塞 I/O 模型,当一个线程发起一个数据库查询时,该线程不会被阻塞,可以继续执行其他任务。当查询结果返回时,会通过响应式流的方式通知线程。

架构示意图

下面是 Spring Data R2DBC 的架构示意图:

+---------------------+
|     Application     |
+---------------------+
           |
           v
+---------------------+
|  Spring Data R2DBC  |
+---------------------+
           |
           v
+---------------------+
|      R2DBC Driver   |
+---------------------+
           |
           v
+---------------------+
|      Database       |
+---------------------+

从图中可以看出,应用程序通过 Spring Data R2DBC 来访问数据库。Spring Data R2DBC 负责将应用程序的数据库操作转换为 R2DBC 驱动可以理解的请求,并将 R2DBC 驱动返回的结果转换为响应式流。R2DBC 驱动负责与具体的数据库进行通信。

Mermaid 流程图

Application
Spring Data R2DBC
R2DBC Driver
Database

这个流程图展示了应用程序、Spring Data R2DBC、R2DBC 驱动和数据库之间的交互过程。应用程序向 Spring Data R2DBC 发送数据库操作请求,Spring Data R2DBC 将请求转发给 R2DBC 驱动,R2DBC 驱动与数据库进行通信并返回结果,结果通过 Spring Data R2DBC 返回到应用程序。

3. 核心算法原理 & 具体操作步骤

核心算法原理

Spring Data R2DBC 的核心算法原理基于响应式编程和异步非阻塞 I/O。当应用程序发起一个数据库操作时,Spring Data R2DBC 会将该操作封装成一个异步任务,并提交给线程池进行处理。在任务处理过程中,线程不会被阻塞,可以继续执行其他任务。当任务完成时,会通过响应式流的方式通知应用程序。

下面是一个简单的 Python 代码示例,模拟 Spring Data R2DBC 的异步处理过程:

import asyncio

# 模拟数据库操作
async def database_operation():
    print("Starting database operation...")
    await asyncio.sleep(2)  # 模拟数据库操作耗时
    print("Database operation completed.")
    return "Result"

# 应用程序
async def application():
    print("Application started.")
    task = asyncio.create_task(database_operation())
    print("Continuing other tasks...")
    result = await task
    print(f"Received result: {result}")

# 运行应用程序
asyncio.run(application())

在这个示例中,database_operation 函数模拟了一个数据库操作,使用 asyncio.sleep 模拟操作耗时。application 函数是应用程序的入口,它创建了一个异步任务来执行数据库操作,并在任务执行过程中继续执行其他任务。当任务完成时,获取任务的结果并打印。

具体操作步骤

以下是使用 Spring Data R2DBC 进行数据库操作的具体步骤:

1. 添加依赖

在 Maven 项目中,添加以下依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-r2dbc</artifactId>
</dependency>
<dependency>
    <groupId>io.r2dbc</groupId>
    <artifactId>r2dbc-h2</artifactId>
</dependency>

这里使用了 H2 数据库作为示例,你可以根据需要选择其他数据库。

2. 配置数据库连接

application.propertiesapplication.yml 中配置数据库连接信息:

spring.r2dbc.url=r2dbc:h2:mem:///testdb
spring.r2dbc.username=sa
spring.r2dbc.password=
3. 创建实体类

创建一个实体类来映射数据库表:

import org.springframework.data.annotation.Id;
import org.springframework.data.relational.core.mapping.Table;

@Table("users")
public class User {
    @Id
    private Long id;
    private String name;
    private int age;

    // 构造函数、Getter 和 Setter 方法
    public User() {}

    public User(String name, int age) {
        this.name = name;
        this.age = age;
    }

    public Long getId() {
        return id;
    }

    public void setId(Long id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }
}
4. 创建 Repository 接口

创建一个 Repository 接口来进行数据库操作:

import org.springframework.data.repository.reactive.ReactiveCrudRepository;

public interface UserRepository extends ReactiveCrudRepository<User, Long> {
}
5. 进行数据库操作

在服务类中使用 Repository 接口进行数据库操作:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Service
public class UserService {
    @Autowired
    private UserRepository userRepository;

    public Mono<User> saveUser(User user) {
        return userRepository.save(user);
    }

    public Flux<User> getAllUsers() {
        return userRepository.findAll();
    }
}
6. 使用服务类

在控制器中使用服务类进行数据库操作:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@RestController
public class UserController {
    @Autowired
    private UserService userService;

    @PostMapping("/users")
    public Mono<User> saveUser(@RequestBody User user) {
        return userService.saveUser(user);
    }

    @GetMapping("/users")
    public Flux<User> getAllUsers() {
        return userService.getAllUsers();
    }
}

通过以上步骤,你就可以使用 Spring Data R2DBC 进行数据库操作了。

4. 数学模型和公式 & 详细讲解 & 举例说明

响应式流的背压机制

在响应式编程中,背压机制是一个重要的概念。背压机制允许下游消费者根据自己的处理能力来调节上游生产者的数据发送速度,避免数据过载。

数学模型

假设上游生产者的数据发送速度为 P P P(单位:元素/秒),下游消费者的处理速度为 C C C(单位:元素/秒)。当 P > C P > C P>C 时,会出现数据积压,需要通过背压机制来调节 P P P

背压机制可以通过一个反馈环来实现,下游消费者会向上游生产者发送一个信号,告诉生产者当前的处理能力。生产者根据这个信号来调整数据发送速度。

公式

P n e w P_{new} Pnew 为调整后的数据发送速度, C C C 为下游消费者的处理速度, α \alpha α 为调整系数( 0 < α ≤ 1 0 < \alpha \leq 1 0<α1),则有:
P n e w = α × C P_{new} = \alpha \times C Pnew=α×C

详细讲解

P > C P > C P>C 时, α < 1 \alpha < 1 α<1,生产者会降低数据发送速度,以避免数据积压。当 P < C P < C P<C 时, α = 1 \alpha = 1 α=1,生产者会以最大速度发送数据。

举例说明

假设上游生产者的初始数据发送速度 P = 100 P = 100 P=100 元素/秒,下游消费者的处理速度 C = 50 C = 50 C=50 元素/秒,调整系数 α = 0.5 \alpha = 0.5 α=0.5。则调整后的数据发送速度为:
P n e w = 0.5 × 50 = 25 P_{new} = 0.5 \times 50 = 25 Pnew=0.5×50=25 元素/秒

通过背压机制,生产者将数据发送速度降低到了 25 元素/秒,避免了数据积压。

吞吐量和延迟

在后端开发中,吞吐量和延迟是两个重要的性能指标。吞吐量表示系统在单位时间内能够处理的请求数量,延迟表示系统处理一个请求所需要的时间。

数学模型

T T T 为吞吐量(单位:请求/秒), N N N 为在时间 t t t 内处理的请求数量,则有:
T = N t T = \frac{N}{t} T=tN

D D D 为延迟(单位:毫秒), t s t a r t t_{start} tstart 为请求开始处理的时间, t e n d t_{end} tend 为请求处理完成的时间,则有:
D = t e n d − t s t a r t D = t_{end} - t_{start} D=tendtstart

详细讲解

吞吐量和延迟是相互关联的。一般来说,提高吞吐量可能会增加延迟,因为系统需要处理更多的请求。而降低延迟可能会降低吞吐量,因为系统需要更多的资源来快速处理每个请求。

举例说明

假设在 10 秒内系统处理了 500 个请求,则吞吐量为:
T = 500 10 = 50 T = \frac{500}{10} = 50 T=10500=50 请求/秒

假设一个请求开始处理的时间为 10:00:00,处理完成的时间为 10:00:01,则延迟为:
D = 1000 D = 1000 D=1000 毫秒

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

1. 安装 Java 和 Maven

确保你已经安装了 Java 8 或更高版本,以及 Maven 3.0 或更高版本。可以通过以下命令检查安装情况:

java -version
mvn -version
2. 创建 Spring Boot 项目

可以使用 Spring Initializr(https://start.spring.io/)来创建一个新的 Spring Boot 项目。选择以下依赖:

  • Spring Web
  • Spring Data R2DBC
  • R2DBC H2
3. 配置数据库连接

application.properties 中配置数据库连接信息:

spring.r2dbc.url=r2dbc:h2:mem:///testdb
spring.r2dbc.username=sa
spring.r2dbc.password=

5.2 源代码详细实现和代码解读

1. 创建实体类
import org.springframework.data.annotation.Id;
import org.springframework.data.relational.core.mapping.Table;

@Table("products")
public class Product {
    @Id
    private Long id;
    private String name;
    private double price;

    public Product() {}

    public Product(String name, double price) {
        this.name = name;
        this.price = price;
    }

    public Long getId() {
        return id;
    }

    public void setId(Long id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }
}

代码解读

  • @Table("products") 注解表示该实体类映射到数据库中的 products 表。
  • @Id 注解表示该字段是表的主键。
2. 创建 Repository 接口
import org.springframework.data.repository.reactive.ReactiveCrudRepository;

public interface ProductRepository extends ReactiveCrudRepository<Product, Long> {
}

代码解读

  • ReactiveCrudRepository 是 Spring Data R2DBC 提供的一个接口,它提供了基本的 CRUD 操作。
  • Product 是实体类,Long 是主键类型。
3. 创建服务类
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Service
public class ProductService {
    @Autowired
    private ProductRepository productRepository;

    public Mono<Product> saveProduct(Product product) {
        return productRepository.save(product);
    }

    public Flux<Product> getAllProducts() {
        return productRepository.findAll();
    }

    public Mono<Product> getProductById(Long id) {
        return productRepository.findById(id);
    }

    public Mono<Void> deleteProduct(Long id) {
        return productRepository.deleteById(id);
    }
}

代码解读

  • @Service 注解表示该类是一个服务类。
  • saveProduct 方法用于保存一个产品到数据库中。
  • getAllProducts 方法用于获取所有产品。
  • getProductById 方法用于根据产品 ID 获取一个产品。
  • deleteProduct 方法用于根据产品 ID 删除一个产品。
4. 创建控制器类
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@RestController
@RequestMapping("/products")
public class ProductController {
    @Autowired
    private ProductService productService;

    @PostMapping
    public Mono<Product> saveProduct(@RequestBody Product product) {
        return productService.saveProduct(product);
    }

    @GetMapping
    public Flux<Product> getAllProducts() {
        return productService.getAllProducts();
    }

    @GetMapping("/{id}")
    public Mono<Product> getProductById(@PathVariable Long id) {
        return productService.getProductById(id);
    }

    @DeleteMapping("/{id}")
    public Mono<Void> deleteProduct(@PathVariable Long id) {
        return productService.deleteProduct(id);
    }
}

代码解读

  • @RestController 注解表示该类是一个 RESTful 控制器。
  • @RequestMapping("/products") 注解表示该控制器处理以 /products 开头的请求。
  • @PostMapping 注解表示处理 POST 请求,用于保存产品。
  • @GetMapping 注解表示处理 GET 请求,用于获取所有产品或根据 ID 获取一个产品。
  • @DeleteMapping 注解表示处理 DELETE 请求,用于删除产品。

5.3 代码解读与分析

通过以上代码,我们实现了一个简单的产品管理系统。使用 Spring Data R2DBC 可以方便地进行数据库操作,并且采用了响应式编程的方式,能够更好地处理高并发请求。

在服务类和控制器类中,我们使用了 MonoFlux 来表示异步操作的结果。Mono 表示包含 0 或 1 个元素的响应式流,Flux 表示包含 0 到 N 个元素的响应式流。

通过这种方式,我们可以避免阻塞线程,提高系统的性能和可扩展性。

6. 实际应用场景

高并发 Web 应用

在高并发的 Web 应用中,传统的数据库访问方式可能会导致性能瓶颈。Spring Data R2DBC 的响应式编程模型可以有效地处理大量并发请求,提高系统的吞吐量和响应速度。例如,电商平台的商品查询、订单处理等功能,使用 Spring Data R2DBC 可以更好地应对高并发场景。

实时数据分析系统

实时数据分析系统需要快速地从数据库中获取数据并进行分析。Spring Data R2DBC 的异步非阻塞特性可以减少数据获取的延迟,提高数据分析的实时性。例如,金融交易系统的实时风险分析、物流系统的实时货物跟踪等。

微服务架构

在微服务架构中,各个微服务之间需要频繁地进行数据交互。Spring Data R2DBC 可以与其他 Spring 框架组件(如 Spring Cloud)很好地集成,为微服务提供高效的数据库访问能力。例如,一个由多个微服务组成的在线教育平台,每个微服务可以使用 Spring Data R2DBC 来访问自己的数据库。

物联网应用

物联网应用通常需要处理大量的实时数据。Spring Data R2DBC 可以用于将物联网设备产生的数据存储到数据库中,并支持实时查询和分析。例如,智能家居系统中设备状态的实时监控、工业物联网中设备运行数据的采集和分析等。

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《Spring实战(第5版)》:全面介绍了 Spring 框架的各个方面,包括 Spring Data R2DBC。
  • 《响应式Spring实战》:专注于 Spring 框架的响应式编程,对 Spring Data R2DBC 有详细的讲解。
7.1.2 在线课程
  • 慕课网的《Spring Boot 响应式编程实战》:通过实际项目案例,讲解了 Spring Boot 和 Spring Data R2DBC 的使用。
  • Coursera 上的《Spring Framework 5: Beginner to Guru》:深入介绍了 Spring 框架的各个模块,包括 Spring Data R2DBC。
7.1.3 技术博客和网站
  • Spring 官方博客(https://spring.io/blog):提供了关于 Spring 框架的最新技术文章和更新信息。
  • Baeldung(https://www.baeldung.com):有很多关于 Spring 框架的技术文章,包括 Spring Data R2DBC 的使用教程。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • IntelliJ IDEA:功能强大的 Java 开发 IDE,对 Spring 框架有很好的支持。
  • Visual Studio Code:轻量级的代码编辑器,配合 Java 扩展可以进行 Spring 项目的开发。
7.2.2 调试和性能分析工具
  • Spring Boot DevTools:提供了热部署和自动重启等功能,方便开发过程中的调试。
  • VisualVM:用于监控和分析 Java 应用程序的性能,包括 CPU、内存、线程等方面的分析。
7.2.3 相关框架和库
  • Project Reactor:Spring Data R2DBC 基于 Project Reactor 实现响应式编程,深入了解 Project Reactor 可以更好地使用 Spring Data R2DBC。
  • H2 Database:一个轻量级的嵌入式数据库,适合开发和测试环境使用。

7.3 相关论文著作推荐

7.3.1 经典论文
  • 《Reactive Manifesto》:阐述了响应式系统的设计原则和优势,为响应式编程提供了理论基础。
  • 《Asynchronous Programming with Reactive Streams》:介绍了响应式流的概念和实现原理。
7.3.2 最新研究成果
  • 在 IEEE Xplore、ACM Digital Library 等学术数据库中搜索关于响应式数据库访问和 Spring Data R2DBC 的最新研究成果。
7.3.3 应用案例分析
  • 可以在 GitHub 上搜索使用 Spring Data R2DBC 的开源项目,学习他人的应用案例和经验。

8. 总结:未来发展趋势与挑战

未来发展趋势

  • 更广泛的数据库支持:随着 R2DBC 规范的不断发展,Spring Data R2DBC 可能会支持更多的关系型数据库,如 MySQL、PostgreSQL 等。
  • 与其他技术的深度融合:Spring Data R2DBC 可能会与其他技术(如机器学习、大数据等)进行深度融合,为开发者提供更强大的功能。
  • 性能优化:未来的版本可能会进一步优化性能,提高系统的吞吐量和响应速度。

挑战

  • 学习曲线:响应式编程的概念和模型对于传统的开发者来说可能比较陌生,需要一定的时间来学习和掌握。
  • 调试和测试:响应式编程的异步和非阻塞特性使得调试和测试变得更加困难,需要开发新的调试和测试工具。
  • 生态系统完善:虽然 Spring Data R2DBC 的生态系统在不断发展,但与传统的 JDBC 相比,仍然存在一些不足,需要进一步完善。

9. 附录:常见问题与解答

1. Spring Data R2DBC 与 JDBC 有什么区别?

Spring Data R2DBC 采用了响应式编程模型,基于非阻塞 I/O,能够更好地处理高并发请求。而 JDBC 是基于阻塞 I/O 模型的,在高并发场景下可能会出现性能瓶颈。

2. 如何处理 Spring Data R2DBC 中的异常?

可以使用 onErrorResumeonErrorReturn 等方法来处理异常。例如:

productRepository.findById(id)
        .onErrorResume(error -> {
            // 处理异常
            return Mono.empty();
        });

3. Spring Data R2DBC 支持事务吗?

是的,Spring Data R2DBC 支持响应式事务。可以使用 @Transactional 注解来声明事务。例如:

@Transactional
public Mono<Product> saveProduct(Product product) {
    return productRepository.save(product);
}

4. 如何进行性能调优?

可以通过调整线程池大小、优化 SQL 查询、使用缓存等方式进行性能调优。同时,使用性能分析工具(如 VisualVM)来定位性能瓶颈。

10. 扩展阅读 & 参考资料

扩展阅读

  • 《Effective Java》:虽然不是专门关于 Spring Data R2DBC 的书籍,但其中的 Java 编程技巧和最佳实践对于使用 Spring Data R2DBC 也有很大的帮助。
  • 《Java 并发编程实战》:了解 Java 并发编程的原理和实践,对于理解 Spring Data R2DBC 的异步非阻塞特性很有帮助。

参考资料

  • Spring Data R2DBC 官方文档(https://docs.spring.io/spring-data/r2dbc/docs/current/reference/html/)
  • R2DBC 官方网站(https://r2dbc.io/)
  • Project Reactor 官方文档(https://projectreactor.io/docs/core/release/reference/)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值