- 博客(270)
- 收藏
- 关注
原创 UNet改进(52):轴向+代理注意力让UNet既轻快又精准
本文提出了一种改进的UNet架构,通过引入轴向注意力代理模块增强医学图像分割性能。该模块将二维自注意力分解为行列两个一维注意力操作,结合可学习代理节点进行全局信息聚合,在保持计算效率的同时提升模型对长距离依赖的建模能力。实验表明,该方法在多个医学图像数据集上较传统UNet提升3.2%-5.7%的Dice系数,边界质量显著改善。该方案特别适用于具有方向性结构的医学图像分割任务,如血管、器官等,在计算复杂度和分割精度之间实现了良好平衡。
2026-01-22 19:42:51
167
原创 VGG改进(22):基于轻量化注意力增强的VGG16网络设计与实现
本文提出了一种轻量化注意力机制并集成到VGG16网络中。该方法在VGG16的每个卷积块后添加轻量化注意力模块,通过全局平均池化和两个全连接层实现通道注意力,仅增加0.06%的参数量。实验表明,在CIFAR-100数据集上,该模型相比原始VGG16提升2.5%的Top-1准确率,同时保持了计算效率。该轻量化设计具有通用性,可扩展到其他CNN架构,为提升模型性能提供了一种高效方案。
2026-01-22 19:36:16
30
原创 VGG改进(21):Hybrid Attention在卷积网络中的融合策略与实践
本文提出了一种混合注意力机制与VGG16结合的创新架构。该设计通过多头自注意力模块捕捉全局特征关系,同时保留卷积的局部特征提取能力。关键技术包括:1)在VGG16关键层插入混合注意力块;2)使用残差连接保持训练稳定性;3)采用渐进式特征变换降低计算复杂度。实验表明,该模型在保持参数效率的同时,显著提升了特征交互能力和可解释性,特别适用于细粒度识别和场景理解任务。文中还详细探讨了空间位置编码、注意力头数选择等技术细节,并提供了完整的PyTorch实现代码。
2025-12-29 18:57:13
163
原创 UNet改进(51):构建UNet with Gated Residual Connections改进版
本文提出了一种改进的UNet架构——门控残差UNet,用于医学图像分割任务。该模型在传统UNet基础上引入门控残差连接,通过可学习的门控参数动态调节残差分支的贡献,具有以下优势:1) 缓解梯度消失问题;2) 增强特征重用效率;3) 提高训练稳定性;4) 改善模型泛化能力。核心组件包括门控残差双卷积块、下采样和上采样模块,在保持UNet经典编码器-解码器结构的同时,通过门控机制自适应融合特征。
2025-12-29 18:48:29
79
原创 UNet改进(50):基于ConvLSTM与对抗学习的图像分割
时序对抗UNet是一种创新的动态医学影像分割方法,通过融合ConvLSTM时序模块和对抗训练框架,有效捕捉影像序列的时空特征。该方法采用生成器-判别器结构,生成器整合时序信息进行端到端分割,判别器提升分割结果的真实性。实验表明,相比传统方法,该模型在Dice系数(0.923)和边界清晰度等方面表现更优,特别适用于心脏MRI、动态增强MRI等时序影像分析。模型包含UNet骨干网络、时序融合模块和对抗训练组件,支持端到端训练,在保持计算效率的同时显著提升了分割精度和时序一致性。
2025-12-16 18:32:01
234
原创 VGG改进(20):Gated Attention在VGG16架构中的集成与应用
本文提出了一种集成门控注意力机制的VGG16改进架构。门控注意力模块通过全局平均池化压缩空间信息,再通过两层全连接网络生成通道注意力权重,实现特征重标定。该模块具有轻量级、端到端可训练和即插即用特性,能自适应增强重要特征通道。实验表明,在VGG16第二、三卷积块后插入门控注意力模块,可使ImageNet分类准确率提升1.2%-1.8%,在细粒度识别任务中效果更显著。可视化分析和消融实验验证了该设计在性能与效率间的平衡优势,为视觉任务提供了一种有效的注意力增强方案。
2025-12-16 18:21:26
46
原创 VGG改进(19):基于Dynamic Sparse Attention的VGG16优化方法
本文提出了一种动态稀疏注意力(DSA)机制,并将其嵌入VGG16网络。DSA在通道注意力基础上进行稀疏化处理,仅保留前k%的重要激活值,其余置零。该方法具有三个优势:1)减少冗余计算;2)增强泛化能力;3)自适应阈值。实验表明,DSA-VGG16在几乎不增加参数量的情况下,准确率提升0.6%,计算量降低40%。该机制可扩展到其他网络架构,适用于目标检测、语义分割等任务。
2025-12-02 18:28:35
72
原创 UNet改进(49):基于Sparsity与Quantization的U-Net模型研究
本文介绍了U-Net模型的PyTorch实现及其轻量化技术。U-Net采用对称编码器-解码器结构,包含双卷积块、下采样、上采样和跳跃连接等模块。通过模块化设计实现了L1非结构化剪枝(减少20%参数量)和动态量化(模型大小减少75%),在保持精度的同时提升推理速度。这两种技术可单独或组合使用,适用于边缘设备部署和实时图像处理场景。实验表明,剪枝和量化能有效降低模型复杂度,为移动端应用提供高效解决方案。
2025-12-02 18:19:22
211
原创 VGG改进(18):基于Residual Attention的VGG16模型优化与实践
本文提出了一种改进的VGG16_ResidualAttention模型,通过在VGG16网络中加入残差注意力模块来提升性能。该模型保留了VGG16的基本结构,在每个卷积块末尾插入轻量级的残差注意力模块,结合注意力机制增强关键特征表达,同时利用残差连接保护信息流。实验表明,改进后的模型在CIFAR-10和ImageNet-1K数据集上准确率提升1.5%-2%,收敛更快且鲁棒性更强。该结构可广泛应用于图像分类、目标检测等视觉任务,并支持与其他注意力机制结合。
2025-11-27 18:43:16
68
原创 UNet改进(48):HybridAdaptiveBlock的自适应特征融合之道
本文提出了一种新型自适应特征融合模块HybridAdaptiveBlock,通过三条并行路径(卷积、注意力和门控)实现多样化特征提取。该模块采用3x3卷积保留局部细节,基于CBAM的注意力机制增强关键特征,并通过门控路径动态学习各分支权重实现自适应融合。实验表明,在CIFAR-100分类任务中可使ResNet-18准确率提升1.2%-1.8%,在目标检测任务中也能提升mAP约1.5%。该模块具有轻量化、即插即用特点,支持多种变体设计,可广泛应用于分类、检测等视觉任务。
2025-11-27 18:36:38
219
原创 UNet改进(47):Deformable Convolution在UNet中的集成与应用
本文提出了一种可变形U-Net(DeformableUNet)结构,通过在U-Net的双卷积模块中集成可变形卷积(DeformConv2d)来提升模型对物体形变和复杂结构的建模能力。传统卷积受限于固定感受野,而可变形卷积通过动态调整采样位置,能更好地适应不规则形状。实现中,在DoubleConv模块的第二个卷积层替换为可变形卷积,同时保持第一层为标准卷积以确保稳定性。实验表明,该方法在保持参数量基本不变的情况下,显著提升了分割精度(mIoU从0.712提升到0.743)。
2025-11-20 20:38:25
110
原创 VGG改进(17):SaFA在VGG16中的应用与性能提升
本文提出了一种新颖的对称感知注意力模块(SaFA),通过建模图像在水平和垂直方向的对称差异来增强CNN对对称结构的感知能力。SaFA包含通道注意力路径和对称感知空间注意力路径,通过计算翻转差异图的均值和标准差生成空间注意力图。实验表明,嵌入SaFA的VGG16网络在ImageNet等数据集上分类准确率提升1.5%-2.2%,尤其擅长处理具有对称结构的物体。该模块特别适用于人脸识别、医学图像分析等场景,未来可扩展到更多网络架构和视觉任务中。
2025-11-20 20:29:21
205
原创 VGG改进(16):基于Agent Tokens的Agent Attention设计与实现
本文介绍了代理注意力机制及其在VGG16网络中的应用。代理注意力通过可学习的代理令牌作为中介,双向建模输入序列元素间的关系,显著降低计算复杂度(从O(L²)降至O(LA))。文章详细解析了AgentAttention模块的实现,包括特征与代理的双向注意力计算过程,并展示了如何将其嵌入VGG16网络结构。该方法通过信息压缩与抽象提升了特征交互能力,兼具计算效率和可解释性,适用于图像分类等多种任务。实验表明该机制有望提升模型性能和收敛速度,且可扩展至其他网络架构和多模态任务。
2025-11-18 19:03:46
209
原创 UNet改进(46):KD-Memory模型全解析
本文提出了一种结合U-Net、知识蒸馏与记忆模块的增强型模型UNetWithKDMemory。该模型在标准U-Net架构基础上,采用知识蒸馏技术让学生模型模仿教师模型的输出,并引入记忆模块存储历史特征以增强罕见样本处理能力。模型包含编码器-解码器结构、双重卷积块、下/上采样模块等组件,通过多任务损失函数(包括任务损失、蒸馏损失和记忆损失)进行联合训练。实验表明,该方法能有效提升模型性能,适用于医学图像分割等像素级预测任务。代码采用PyTorch实现,支持灵活配置记忆库大小和特征维度。
2025-11-18 18:48:26
68
原创 UNet改进(45):融合Group Convolution与Hierarchical Feature Fusion的图像分割模型
本文提出GH-UNet模型,通过引入分组卷积和分层特征融合机制改进传统UNet架构。GH-UNet采用分组卷积降低参数量,增强特征多样性;利用分层融合模块通过通道注意力机制自适应加权特征图。实验表明,该模型在医学图像分割任务中,以更少参数(18.5M vs 31.0M)实现更高mIoU(80.1% vs 78.2%)和更快推理速度(52fps vs 45fps)。模块化设计便于扩展,适用于计算资源受限的场景,如医疗影像和自动驾驶等领域的图像分割任务。
2025-11-11 20:15:23
104
原创 VGG改进(15):Sparse Attention在VGG16中的设计与实现
本文提出了一种稀疏注意力机制,通过Top-K选择仅保留前k%的重要特征,有效减少计算开销并抑制噪声干扰。该模块结合通道和空间注意力,使用PyTorch实现并可灵活嵌入CNN结构。实验表明,嵌入稀疏注意力的VGG16在ImageNet上准确率提升1.2%,计算速度提高15%。该方法具有轻量高效、即插即用等特点,在保持模型性能的同时增强了计算效率和鲁棒性。
2025-11-11 20:04:43
201
原创 VGG改进(14):Grouped Attention,一种更优的VGG16增强方案
本文介绍了分组注意力机制(GroupedAttention)及其在VGG16模型中的应用。传统通道注意力计算成本高,分组注意力通过将通道分组并独立计算权重,显著降低了计算复杂度(参数量减少为2×C²/(r×G)+C),同时保持了模型性能。在VGG16中嵌入分组注意力模块后,实验显示Top-1准确率提升1.3%(72.8% vs 71.5%),参数量仅增加1M(139M vs 138M)。该机制适用于轻量化模型设计,未来可扩展至混合注意力、动态分组等方向。
2025-10-14 21:33:07
237
原创 UNet改进(44):动态平衡UNet生成器与PatchGAN判别器
本文提出了一种基于UNet生成器和PatchGAN判别器的动态对抗训练框架。模型采用UNet的编码器-解码器结构,通过跳跃连接保留图像细节;判别器采用PatchGAN结构进行局部区域判断。训练过程中结合重建损失和对抗损失,并引入动态权重调整策略,初期侧重重建损失学习图像结构,后期逐步增加对抗损失权重。此外,采用混合精度训练加速过程,并提出了梯度裁剪、学习率衰减等优化技巧。该框架适用于图像生成、修复等任务,具有良好的可扩展性,未来可引入多尺度判别器、自注意力等机制进一步提升性能。
2025-10-14 21:22:42
132
原创 UNet改进(43):SaFA-MS-UNet如何提升图像分割精度?
本文提出了一种改进的UNet变体SaFA-MS-UNet,通过引入对称感知模块(SaFA)和多尺度融合模块(MS-Fusion)来增强模型性能。SaFA模块利用水平翻转和通道注意力机制增强对称结构的感知能力,MS-Fusion模块通过多尺度卷积融合不同层次的特征。该模型在医学图像、遥感图像等多个数据集上表现优异,mIoU提升显著(如皮肤病变分割从78.3%提升至81.7%),尤其擅长处理对称结构目标和多尺度场景,同时保持了计算效率。实验证明该模型在分割精度和鲁棒性方面均优于传统UNet。
2025-10-06 20:15:29
187
原创 VGG改进(13):基于FFT的Frequency Attention模块应用
本文提出了一种频域注意力机制(FrequencyAttention),通过将图像从空间域转换到频域,结合频域特征与空间注意力形成互补优势。该模块利用FFT变换获取频域特征,并与空间注意力融合,能够更好地捕捉图像的整体结构和频率信息。将频域注意力嵌入VGG16网络后,在CIFAR-100和ImageNet数据集上分别提升了1.5%和1.4%的准确率。实验结果表明,频域注意力使模型更关注物体的结构轮廓而非局部纹理。文章还提出了改进方向,包括采用更精确的频域变换、多频带注意力设计等。
2025-10-06 19:53:34
282
原创 VGG改进(12):PositionAttentionModule 源码解析与设计思想
位置注意力模块通过自注意力机制增强特征图的空间感知能力。该模块使用三个1x1卷积分别生成查询(Q)、键(K)和值(V)向量,其中Q和K通道数缩减为输入的1/8以降低计算复杂度。前向传播过程包括:特征展平、注意力权重计算(通过QK点积和softmax)、加权融合以及残差连接。该机制能直接建立全局空间依赖关系,提供自适应感受野,适用于语义分割、目标检测等任务。优势包括全局上下文感知和内容自适应性,但存在高计算复杂度的问题。改进方法包括局部注意力窗口和多头注意力等。
2025-09-30 19:53:22
192
原创 UNet改进(42):结合2D Sinusoidal Positional Encoding与Frequency Attention模型
本文提出了一种增强版UNet模型,通过引入二维正弦位置编码(PositionalEncoding2D)和频率注意力机制(FrequencyAttention)来提升图像分割性能。位置编码显式注入空间位置信息,频率注意力模块自适应调整通道权重以强调关键频率成分。这两个模块被整合到UNet的基础双卷积块中,构建了UNetWithPosFreq模型。实验表明,该方法在边界清晰度和小目标识别上表现优异,能有效提升分割任务的IoU和Dice系数指标。该方案轻量高效,易于嵌入现有CNN架构,具有通用性和实用价值。
2025-09-30 19:43:43
92
原创 VGG改进(11):基于WaveletAttention的模型详解
本文提出了一种结合小波变换与注意力机制的VGG16改进模型。小波变换通过将图像分解为LL、LH、HL、HH四个频带实现多尺度特征提取,同时保留时频信息。模型创新点包括:1)在标准VGG16卷积块后添加小波注意力模块,通过频域注意力机制自适应加权不同频带;2)设计可逆的小波变换/反变换模块确保信息无损;3)模块化结构可扩展至其他CNN架构。实验表明,该模型在纹理丰富和多尺度目标的图像分类任务中表现优异,频域分析能力有助于提升特征提取效果。
2025-09-26 18:30:12
987
原创 UNet改进(41):基于PyTorch的轻量量化UNet
本文提出了一种轻量化且支持量化的UNet变体——LightQuantUNet,通过深度可分离卷积替代标准卷积,结合双线性上采样和模型量化技术,显著降低了模型复杂度。实验表明,该模型在保持与原UNet相近精度(mIoU 0.880)的同时,参数量减少至1/3(850万),CPU推理速度提升4倍(28ms)。该方案特别适用于资源受限的移动端或嵌入式设备上的实时图像分割任务,为医疗影像等领域的实际应用提供了高效解决方案。
2025-09-26 18:11:47
428
原创 UNet改进(40):CrossTemporalUNet在3D时序数据处理中的应用
本文介绍了3D卷积在时序数据处理中的应用及CrossTemporalUNet架构。3D卷积通过同时在空间和时间维度运算,能有效捕获时序动态特征。CrossTemporalUNet采用编码器-解码器结构,创新性地融合时空信息,其核心DoubleConv3D模块结合3D卷积、批归一化和ReLU激活,在保持特征图尺寸的同时增强非线性表达能力。该架构通过选择性下采样和输入处理优化计算效率,适用于视频分析、医学影像处理等场景。
2025-09-23 19:34:38
275
原创 VGG改进(10):将Dynamic Conv Attention引入VGG16完整指南
本文提出了一种改进传统卷积神经网络的方法——动态卷积注意力机制,并将其集成到VGG16架构中。该机制通过注意力网络生成与输入相关的动态权重,使卷积核能够根据图像内容自适应调整,解决了传统静态卷积核的局限性。文章详细阐述了模块的代码实现,包括基础卷积层和注意力机制的设计,以及将其嵌入VGG16网络的具体方法。实验表明,该方法在ImageNet分类任务上实现了2-3%的准确率提升,计算开销仅增加15%以内。文章还讨论了动态卷积的优势、应用建议和扩展方向,为提升CNN性能提供了一种有效途径。
2025-09-23 19:25:09
948
原创 UNet改进(39):基于Res-Gated的UNet改进架构解析
ResGatedUNet:融合残差连接与门控机制的改进UNet架构 ResGatedUNet在经典UNet架构基础上,创新性地集成了残差连接和门控机制。该架构通过ResGatedDoubleConv模块实现:1)双卷积结构增强特征提取能力;2)残差连接缓解梯度消失问题;3)门控机制实现自适应特征选择。模型保持UNet的对称编码器-解码器结构,通过跳跃连接保留空间信息。在医学影像、遥感图像等分割任务中表现出色,其优势包括:梯度流优化、特征选择性增强、参数效率高和信息保留能力强。
2025-09-18 21:43:51
372
原创 VGG改进(9):融合Axial Attention的VGG16架构
本文提出了一种融合轴向注意力机制的改进VGG16模型。轴向注意力通过将二维注意力分解为水平和垂直两个一维计算,显著降低了计算复杂度(从O((H×W)²)降至O(H×W×(H+W)))。该方法在VGG16的第3-5个卷积块后添加轴向注意力模块,采用残差连接方式整合注意力输出。实验表明,这种设计既保持了CNN的局部特征提取能力,又增强了全局建模和位置感知能力,适用于图像分类、目标检测等视觉任务。文中详细阐述了轴向注意力的实现原理、与VGG16的集成策略,并提供了完整的PyTorch实现代码。
2025-09-18 21:29:48
630
原创 VGG改进(8):融合Self-Attention的CNN架构
本文提出了一种将自注意力机制与VGG16相结合的混合架构。自注意力机制通过计算序列元素间的相关性,弥补了CNN在捕获长距离依赖上的不足。实现策略是在VGG16的特定卷积块后插入Transformer编码器层,形成局部-全局特征融合。文章详细解析了自注意力模块、Transformer编码器层以及特征图序列化处理等关键技术细节,并讨论了模型在细粒度分类等任务中的优势。该架构在保持CNN局部特征提取能力的同时增强了全局上下文建模,且具有灵活可扩展的特点。
2025-09-10 20:29:15
1198
原创 UNet改进(38):基于Agent-based Sparsification模型压缩解析
本文提出了一种基于代理稀疏化的UNet模型优化方法,通过可学习的代理参数动态评估通道重要性,实现模型压缩与加速。该方法在训练阶段使用Gumbel-Softmax生成近似离散的掩码,结合稀疏性约束;在推理阶段直接选择重要通道。实验表明,该方法能在保持模型性能的同时显著减少参数量和计算量(稀疏率0.4时参数减少35%,计算量减少40%)。文章详细阐述了技术原理、代码实现和优化技巧,并展示了该方法在UNet及其他网络架构中的应用潜力。
2025-09-10 20:11:39
117
原创 VGG改进(7):基于Spatial Attention的性能优化
本文介绍了空间注意力机制及其在VGG16网络中的应用。空间注意力通过计算特征图的空间权重,使网络能够聚焦于图像的关键区域。其核心实现包括平均池化、最大池化的拼接,以及卷积层生成注意力图。文章详细展示了如何在VGG16的每个卷积块后集成空间注意力模块,通过手动前向传播实现注意力加权。这种改进仅增加少量参数,却能显著提升模型性能。最后提供了完整的PyTorch实现代码,包括模型构建、参数统计和测试示例。
2025-09-02 19:40:42
1027
原创 UNet改进(37):AxialDynamicConv2D原理剖析与实战应用
本文提出了一种基于轴向动态卷积的改进UNet架构,通过自适应权重生成机制解决了传统卷积的内容不适应性缺陷。该模型采用编码器-解码器结构,在基础双卷积模块中引入动态卷积层,配合批量归一化提升特征提取能力。实验表明,相比标准UNet,动态卷积版本在IoU和Dice系数上分别提升3.5%和2.8%,仅增加4%的参数量。文章详细阐述了网络各模块的实现原理,包括动态权重生成、跳跃连接设计等关键技术,并提供了完整训练策略和优化技巧,如混合精度训练和梯度累积。最后讨论了模型压缩和部署方案,为实际应用提供了可行性指导。
2025-09-02 19:30:01
120
原创 VGG改进(6):基于PyTorch的VGG16-SE网络实战
本文介绍了Squeeze-and-Excitation(SE)注意力机制在计算机视觉中的应用及其PyTorch实现。SE模块通过显式建模通道间依赖关系,自适应地重新校准特征响应,增强重要通道的权重。文章详细解析了SE的三步操作(Squeeze、Excitation、Scale)及其数学表达,并提供了完整的PyTorch实现代码。重点展示了如何将SE模块集成到VGG16网络中,在每个卷积块后添加SE模块以提升性能。
2025-08-30 13:06:12
1093
原创 UNet改进(36):融合FSATFusion的医学图像分割
本文提出FS-UNet模型,在经典U-Net架构中融合频率和空间注意力机制(FSATFusion)以提升医学图像分割性能。该模型通过频率注意力捕获全局上下文信息,空间注意力聚焦显著区域,采用乘法融合策略实现互补优势。实验表明,FS-UNet在ISIC-2018和CVC-ClinicDB数据集上Dice系数达0.872,优于标准U-Net等基线模型。文章详细介绍了模块设计、实现代码、训练方法和消融实验,证实双重注意力机制能有效平衡局部细节与全局语义信息。研究为医学图像分析提供了性能优越且实用的解决方案。
2025-08-30 12:36:49
156
原创 VGG改进(5):基于Multi-Scale Attention的PyTorch实战
本文提出了一种集成多尺度注意力机制的VGG16改进方案。该方案通过1×1、3×3、5×5卷积核并行提取多尺度特征,结合通道注意力与空间注意力机制,使模型能自适应关注不同层次的特征信息。模块采用残差连接保持训练稳定性,在VGG16各卷积块后插入以增强多尺度特征学习能力。实验表明该方法在细粒度分类等任务中表现优异,同时保持了计算效率。文章详细阐述了模块实现原理、网络集成策略及训练技巧,并提供了完整的PyTorch实现代码,为视觉任务中的多尺度特征学习提供了有效解决方案。
2025-08-26 19:18:20
843
原创 UNet改进(35):基于WGAM模块的PyTorch实战
本文提出了一种基于小波引导注意力机制(WGAM)的改进U-Net模型,用于提升图像分割性能。WGAM模块创新性地结合了小波变换的多尺度分析能力和注意力机制的特征选择能力,通过通道注意力和空间注意力分支增强关键特征。模型在U-Net架构中嵌入WGAM模块,实现了端到端的训练。实验结果显示该方法在医学图像分割任务中显著提升了IoU和Dice系数等指标,同时保持了较低的计算开销。文章详细介绍了WGAM模块的设计原理、代码实现以及训练策略,并提供了完整的网络架构和评估方法,为相关研究提供了可复现的基准方案。
2025-08-26 19:05:26
146
原创 UNet改进(34):ACmix-UNet混合架构的PyTorch
本文提出了一种改进的UNet架构——UNet+ACmix,通过融合卷积和自注意力机制提升图像分割性能。ACmix模块采用共享特征降维、分支处理和动态融合策略,结合卷积的局部特征提取能力与自注意力的全局建模优势。实验表明,在略微增加参数量的情况下,该方法在多个数据集上mIoU指标提升1.9%。文章详细介绍了ACmix模块结构、UNet嵌入方式、训练调优策略(如混合精度训练)及实验结果,为图像分割任务提供了一种有效的新型架构方案。
2025-08-23 13:49:23
381
原创 VGG改进(4):融合Linear Attention的高效CNN设计与实践
本文提出了一种在VGG16网络中嵌入线性注意力机制的方法。通过实现轻量级的LinearAttention模块,该方案在保持计算效率(复杂度O(N))的同时显著提升了模型性能。模块采用降维处理、点积注意力和残差连接等技术,插入到VGG16各卷积块后。实验表明,改进后的VGG16+LA在CIFAR-100上Top-1准确率提升1.7%,参数量仅增加0.8M。文章详细阐述了原理实现、训练优化策略,并提供了可视化分析和完整代码,为注意力机制在经典网络中的应用提供了实践参考。
2025-08-23 13:38:47
733
原创 VGG改进(3):基于Cross Attention的VGG16增强方案
本文探讨了交叉注意力机制在深度学习中的应用,重点介绍如何将其整合到VGG16架构中以增强模型性能。文章首先解析了交叉注意力的数学原理和优势,包括跨模态信息融合和动态特征选择能力;随后详细说明了在VGG16中实现交叉注意力的关键步骤和代码实现;最后通过实验验证了该方法的有效性,显示准确率提升3.5%。文章还提供了高级优化技巧和未来研究方向,为多模态学习任务提供了实用解决方案。
2025-08-20 22:33:41
963
原创 UNet改进(33):基于CBAM原理与PyTorch实战指南
本文提出了一种基于CBAM注意力机制的改进UNet网络(UNet_CBAM),用于提升图像分割性能。CBAM模块包含通道和空间双重注意力机制,能自适应聚焦关键特征区域。网络采用编码器-解码器结构,在下采样和上采样过程中均嵌入CBAM模块,通过跳跃连接保留多尺度特征。实验表明,相比基础UNet,该模型在医学图像分割任务中能提升2-5%的Dice系数,收敛更快且抗干扰性更强。文章详细解析了模块实现、网络架构、训练建议,并提供了完整的PyTorch代码实现。
2025-08-20 22:16:57
301
【软件开发工具】Cursor智能代码编辑器:AI辅助编程与协作功能提升开发效率系统设计
2025-07-18
【微信小程序开发】资源指南:涵盖官方文档、工具、教程、UI组件库及实战案例汇总介绍了微信小程序开发
2025-07-16
DevOps全流程落地实战指南:核心工具链配置、容器化部署、自动化运维监控与安全合规体系建设
2025-07-16
【机器人竞赛】睿抗RoboCom大赛资源指南:涵盖官方、学习、硬件资源及备赛建议
2025-07-13
【虚拟化技术】VMware资源管理与优化指南:计算、内存、存储及网络资源调配策略了文档的主要内容
2025-07-13
【GitCode资源管理】涵盖资源类型、利用方法及最佳实践:助力开发者高效管理与贡献代码仓库和技术文档
2025-07-13
Web安全Upload-Labs文件上传漏洞学习与防御措施总结:从环境搭建到实战技巧全面解析
2025-07-11
【机器人竞赛】睿抗机器人开发者大赛资源指南:涵盖官方资源、学习资料与备赛建议睿抗机器人开发者
2025-07-11
【计算机科学】数据结构学习资源指南:涵盖书籍、课程、工具及实践平台推荐
2025-07-10
网络安全Upload-Labs文件上传漏洞与防御解析:靶场实战及防御方案设计
2025-07-10
【数据库管理】SQL语句资源大全:涵盖基础查询、数据操作、高级语句及性能优化技巧
2025-07-09
【嵌入式系统】嵌入式系统资源开发指南:涵盖硬件架构、软件资源、开发工具链及优化技术综述
2025-07-09
【计算机视觉】YOLOv5目标检测算法资源指南:涵盖官方资源、预训练模型及部署选项介绍
2025-07-09
【软件开发工具】Maven下载安装与配置指南:涵盖Windows/Linux/macOS系统环境变量设置及基本使用方法
2025-07-08
【Spring Boot】资源管理指南:静态与动态资源处理、文件上传下载及国际化配置
2025-07-08
【前端工程化】项目脚手架搭建与代码规范:自动化测试及CI/CD部署全流程优化方案设计
2025-07-08
深度学习深度学习资源指南:涵盖核心概念、学习资源、实践工具及进阶方向推荐
2025-07-06
AI教育涵盖机器学习与深度学习的AI教程、案例及项目资源汇总:助力初学者全面入门
2025-07-04
【嵌入式系统】MSPM0G3507微控制器资源指南:工业与物联网应用的32位Arm Cortex-M0+核心特性及开发资源介绍文档的主要内容
2025-07-06
【数据库课程设计】涵盖选题参考、项目案例、设计规范及工具推荐:助力高效完成课程设计任务
2025-07-04
边缘计算基于AI芯片选型与模型优化的边缘智能部署:从硬件适配到YOLO系列模型性能调优的全流程技术解析
2025-11-18
基于Swin Transformer和Triplet Attention的先进图像分类系统+项目文书+毕设!
2025-07-31
基于ViT与CPCA注意力机制的图像分类系统+课题研究
2025-08-06
高效视觉Transformer模型:融合坐标注意力机制的图像分类解决方案+有效涨点
2025-08-06
基于深度学习的图像分类解决方案,采用Swin Transformer结合ASPP模块的先进架构
2025-07-24
【蓝桥杯备赛】官方资源与编程平台整合:备赛策略及实战技巧全面指南
2025-07-30
【电子设计竞赛】2025年全国大学生电子设计竞赛预测与资源指南:新兴技术融合与备赛建议
2025-07-30
基于CBAM增强的ViT图像分类解决方案+有效涨点!
2025-07-31
基于ViT与ASPP的先进图像分类系统+项目文书+可发文章
2025-07-31
基于Swin Transformer的高效图像分类解决方案
2025-07-31
高效图像分类解决方案:基于Swin Transformer与SK模块的深度学习模型+说明文档+涨点
2025-07-30
基于Swin Transformer与SimAM注意力机制的图像分类解决方案+有效涨点+可做毕设!
2025-07-30
基于Swin Transformer和SE模块的先进图像分类系统+项目文书+可发文章
2025-07-30
基于Swin Transformer与GAM注意力的高效图像分类系统+课题研究
2025-07-28
基于Swin Transformer与Dual Cross-Attention的先进图像分类系统+有效涨点
2025-07-28
基于Swin Transformer与EMA模块的高效图像分类系统+项目文书+毕设
2025-07-28
基于Swin Transformer与NAM注意力机制的高效图像分类解决方案+说明文档
2025-07-28
基于深度学习的图像分类解决方案,采用了先进的Swin Transformer架构并结合CBAM注意力机制,能够高效准确地进行图像分类任务
2025-07-26
基于Swin Transformer架构,创新性地集成了CoordAtt注意力机制,构建了一个高效的图像分类系统
2025-07-26
基于Swin Transformer与注意力机制的高效图像分类解决方案
2025-07-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅