✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着环境保护意识的日益增强和新能源技术的快速发展,电动汽车(EV)在城市物流配送领域的应用越来越广泛。然而,电动汽车的续航里程限制和充电时间对传统的路径规划问题(VRP)提出了新的挑战,形成了电动汽车路径规划问题(EVRP)。其中,带有时间窗约束的电动汽车路径规划问题(EVRPTW)是更具实际意义和复杂性的一个变种。EVRPTW的核心目标是在满足所有客户的时间窗要求、电动汽车的续航里程限制以及充电需求的前提下,规划出最优的配送路径,以实现最小化总成本(包括行驶成本、充电成本、车辆使用成本等)。由于EVRPTW是一个典型的NP-hard问题,精确算法难以在合理时间内求解大规模实例,因此启发式和元启发式算法成为主流的求解方法。本文将深入探讨基于粒子群优化(PSO)算法求解EVRPTW的理论基础、算法设计以及潜在的应用前景,旨在为解决这一复杂的物流配送问题提供一种有效的智能优化方案。
关键词:电动汽车路径规划问题(EVRP);电动汽车路径规划问题(EVRPTW);粒子群优化算法(PSO);时间窗约束;最小成本;路径规划。
引言
城市物流配送是现代经济运行的重要组成部分,其效率和成本直接影响着企业的竞争力和社会资源的利用效率。传统的燃油货车路径规划问题(VRP)已得到广泛研究,并发展出多种有效的求解算法。然而,随着环境污染和能源危机的日益突出,电动汽车作为一种绿色、环保的运输方式,正逐步取代燃油车辆在城市配送中的地位。电动汽车的应用带来了新的机遇,同时也带来了新的挑战,其中最关键的问题之一就是电动汽车的续航里程限制和充电需求。与燃油车可以随时随地加油不同,电动汽车需要定点充电,且充电时间相对较长,这些因素极大地增加了路径规划的复杂性。
电动汽车路径规划问题(EVRP)由此应运而生,其目标是在考虑电动汽车特性(如电池容量、能耗模型、充电站位置等)的基础上,规划最优的配送路径。更具实际意义的是带有时间窗约束的电动汽车路径规划问题(EVRPTW),它不仅需要考虑电动汽车的特性,还需要满足每个客户特定的服务时间窗要求。EVRPTW的优化目标通常是最小化总成本,这包括车辆行驶产生的能耗成本、在充电站充电产生的费用、车辆的固定使用成本以及潜在的惩罚成本(如超时服务)。
EVRPTW的复杂性主要体现在以下几个方面:
- 续航里程约束与充电决策耦合:
车辆在行驶过程中电量不断消耗,需要根据当前的电量、剩余路程以及电池容量来决定是否需要前往充电站充电。充电站的选择、充电量以及充电时间都会影响路径的整体可行性和成本。
- 时间窗约束的严格性:
车辆必须在指定的时间窗内到达并服务客户,这增加了路径规划的难度,需要在满足时间约束的同时兼顾行驶效率和充电需求。
- 充电时间的影响:
充电需要消耗额外的时间,这段时间会占用车辆的配送时间,可能导致无法按时服务后续客户,从而影响路径的可行性。
- 多目标优化特性:
虽然主要目标是最小化成本,但在实际应用中可能还需要考虑其他因素,如最大化服务客户数量、最小化行驶距离等,形成多目标优化问题。
由于EVRPTW属于NP-hard问题,对于大规模实例,传统的精确算法(如分支定界、动态规划等)往往难以在可接受的时间内获得最优解。因此,启发式算法和元启发式算法成为解决EVRPTW的主流方法,其中包括遗传算法(GA)、模拟退火(SA)、蚁群算法(ACO)以及粒子群优化算法(PSO)等。这些算法通过模拟自然现象或群体行为,在解空间中进行搜索,从而找到近似最优解。
本文将重点探讨基于粒子群优化(PSO)算法求解EVRPTW的方法。PSO算法是一种基于群体的智能优化算法,其灵感来源于鸟群捕食行为。算法通过粒子在解空间中移动来搜索最优解,每个粒子根据自身的历史最优位置和整个粒子群的历史最优位置来调整其飞行方向和速度。PSO算法具有概念简单、易于实现、收敛速度快等优点,已被广泛应用于各种优化问题的求解。将PSO应用于EVRPTW,需要对粒子的表示、速度和位置更新机制进行设计,使其能够有效地处理EVRPTW的约束和目标函数。
EVRPTW问题建模
在深入探讨基于PSO算法的求解方法之前,首先需要对EVRPTW问题进行形式化建模。一个典型的EVRPTW问题可以描述为:给定一个配送中心(仓库),一组需要服务的客户,一些充电站以及一支由同质电动汽车组成的配送车队。每个客户有特定的位置坐标、需求量和服务时间,并有指定的服务时间窗 [𝐸𝑇𝑖,𝐿𝑇𝑖][ETi,LTi],其中 𝐸𝑇𝑖ETi 是最早服务时间,𝐿𝑇𝑖LTi 是最晚服务时间。每个充电站也有其位置信息,并提供充电服务。每辆电动汽车有固定的载货容量 𝑄Q 和电池容量 𝐵𝑚𝑎𝑥Bmax,单位里程能耗为 𝜖ϵ,单位时间固定使用成本为 𝐶𝑓𝑖𝑥Cfix,单位距离行驶成本为 𝐶𝑑𝑟𝑖𝑣𝑒Cdrive,单位电量充电成本为 𝐶𝑐ℎ𝑎𝑟𝑔𝑒Ccharge。充电站的充电速率为 𝜆λ。
问题的目标是在满足所有客户需求和时间窗约束、车辆载货容量约束、电池容量约束以及续航里程约束的前提下,规划车辆从配送中心出发,访问指定的客户和必要的充电站,最终返回配送中心的路径,使得总成本最小。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇