【论文复现】模拟风电不确定性——拉丁超立方抽样生成及缩减场景研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言​

在全球积极推动能源转型的大背景下,风能作为一种清洁、可再生能源,在电力系统中的占比不断攀升。然而,风电出力具有显著的不确定性,这给电力系统的稳定运行、优化调度以及规划带来了诸多挑战。准确模拟风电不确定性对于提升电力系统应对风电接入能力、保障系统安全可靠运行至关重要。​

风电出力的不确定性主要源于预测误差。大量研究表明,预测误差(e)服从正态分布,且通常约为预测出力的 10% 。如何有效处理这一不确定性,成为电力领域研究的热点问题。目前,不确定性模拟大致分为随机优化和场景分析两类。场景分析通过构建确定性场景来剖析电力系统不确定性问题,是解决含可再生能源的电力系统优化规划运行问题的有效途径。在众多场景生成方法中,基于抽样的方法应用较为广泛,例如蒙特卡罗(Monte Carlo, MC)方法、拉丁超立方体采样(Latin Hypercube Sampling, LHS)方法和马尔可夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)等。不同的抽样方法因初始数据相关性以及实际需求的差异而各有应用。​

二、拉丁超立方抽样(LHS)原理及实现​

2.1 LHS 原理​

拉丁超立方抽样是一种随机分层抽样方法。与传统的蒙特卡罗模拟方法采用的简单随机抽样不同,LHS 不需要大规模储存和长时间计算,其模拟样本能更好地反映变量的分布范围。该方法的核心在于将每个变量的概率分布区间划分为若干个等概率的子区间(层数),在每个子区间内随机抽取一个样本值,从而保证在每个子区间都有样本点被选取,使得样本在整个分布范围内更为均匀。​

对于风电不确定性模拟,假设我们要考虑风速这一关键变量(实际上影响风电出力的还有风向、空气密度等多种因素,这里以风速为例说明)。首先确定风速的概率分布,一般可通过对历史风速数据进行统计分析,拟合出其概率分布函数,常见的如威布尔分布等。然后将风速的取值范围按照概率等分为 N 个区间,从每个区间中随机抽取一个风速值,这样得到的 N 个风速样本就构成了基于拉丁超立方抽样的风速样本集。相较于简单随机抽样,LHS 生成的样本集在整个风速取值范围内分布更为均匀,能更全面地覆盖各种可能的风速情况,进而更准确地模拟风电出力的不确定性。

⛳️ 运行结果

🔗 参考文献

[1] 孟安波,林艺城,殷豪.计及不确定性因素的家庭并网风-光-蓄协同经济调度优化方法[J].电网技术, 2018, 42(1):8.DOI:CNKI:SUN:DWJS.0.2018-01-021.

[2] 孙世成.考虑需求响应及风电不确定性的电-氢综合能源系统经济调度[D].燕山大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值