✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着物流行业的快速发展,如何提高配送效率、降低成本成为关键问题。本文针对一辆卡车与两架无人机协同配送小包裹至随机分布客户的场景,以配送总距离最短为目标,构建协同配送路径优化数学模型,并采用遗传算法进行求解。通过设计合适的染色体编码、遗传操作及适应度函数,实现配送路径的优化。仿真实验结果表明,遗传算法能够有效求解该协同配送路径优化问题,相较于传统配送方案,可显著缩短配送总距离,提高配送效率,为物流配送的智能化发展提供理论与实践参考。
关键词
卡车 - 无人机协同配送;路径优化;遗传算法;配送效率
一、引言
1.1 研究背景
近年来,电子商务的蓬勃发展带动了物流行业的繁荣,客户对包裹配送的时效性与准确性要求日益提高。传统的单一卡车配送模式存在效率低、成本高的问题,难以满足日益增长的配送需求。无人机具有灵活性高、不受地面交通限制等优势,将卡车与无人机相结合的协同配送模式应运而生,能够充分发挥两者的优势,为物流配送提供新的解决方案 。
1.2 研究现状
国内外学者针对卡车 - 无人机协同配送路径优化问题开展了大量研究。部分研究采用启发式算法求解,但对于复杂的配送场景,启发式算法难以保证得到最优解;也有研究运用精确算法,但随着问题规模的扩大,精确算法的计算复杂度急剧增加,难以满足实际应用需求。遗传算法作为一种高效的全局搜索算法,在路径优化问题中展现出良好的性能,但在卡车与无人机协同配送路径优化领域的应用仍有待深入探索 。
1.3 研究目的与意义
本研究旨在构建一辆卡车与两架无人机协同配送路径优化模型,并利用遗传算法求解,以实现配送总距离最短,提高配送效率,降低物流成本。研究成果可为物流企业优化配送方案提供理论依据,推动物流配送向智能化、高效化方向发展 。
二、协同配送路径优化问题描述与模型构建
2.1 问题描述
假设存在一个中转站,一辆卡车和两架无人机需将小包裹递送给随机分布的
n
个客户,每个客户仅需被服务一次,且配送完成后卡车和无人机均需返回中转站。卡车负责长距离运输及部分客户的配送,无人机可从卡车上起飞,对距离较近的客户进行配送后返回卡车,要求规划卡车和无人机的配送路径,使整个配送过程的总距离最短 。
2.2 模型假设
- 卡车和无人机在行驶过程中速度恒定,不考虑交通拥堵、天气等因素对行驶速度的影响。
- 无人机的续航能力能够满足单次飞行配送任务的需求,且无人机从卡车上起飞和降落所需时间可忽略不计。
- 每个客户的包裹重量和体积在卡车和无人机的承载范围内。
- 卡车和无人机的出发与返回时刻已知,不考虑装卸货时间。
2.3 数学模型构建
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类