数据分析小白也能掌握的7种超实用模型

Hey 宝子们,今天我来给大家分享一波数据分析的干货啦!我知道很多小伙伴和我以前一样,一提到数据分析就头大,但其实只要掌握了正确的方法和模型,数据分析也能变得so easy!就好比我,在探潜数据分析课程中学习一段时间后,数据分析对我来说完全是小菜一碟!今天我就来给大家分享 7 种超实用的数据分析模型,让你在数据分析的路上也能“灵光一闪”,轻松逆袭!(以下图片均来自网络)

一、关联规则分析

关联规则分析就是找出数据中不同事物之间的关联关系。这种分析方法在电商网站推荐商品、银行分析客户消费行为等场景都能用到,能帮我们发现隐藏在数据中的宝藏信息,为业务决策提供有力支持。

二、决策树分析

决策树分析就像是给我们提供了一张清晰的决策地图。它通过将数据按照不同的特征进行划分,形成一棵树状的结构,帮助我们做出决策。

https://pic2.zhimg.com/v2-5caca257b71393674d571fea22119e8b_1440w.jpg

基于西瓜分类的一颗决策树

三、时间序列分析

时间序列分析是对按照时间顺序排列的数据进行分析,通过时间序列分析,我们可以发现数据中的趋势等规律,从而对未来进行预测。

四、主成分分析

主成分分析是一种降维方法,它可以把多个相关变量简化为几个主要成分,同时保留大部分的信息。下面是一种主成分分析的示意图。

这个方法特别适合处理数据维度较多的情况,能帮助我们简化问题,快速找到关键因素。

五、因子分析

因子分析和主成分分析有点类似,但是它更侧重于找出隐藏在数据背后的潜在因子

通过因子分析,我们可以深入了解数据的本质,挖掘出更有价值的信息,学会因子分析,可以让你的数据分析更有深度。

六、线性回归分析

线性回归分析是数据分析中最基础也是最常用的方法之一。它通过建立自变量和因变量之间的线性关系模型,来预测因变量的值,比如根据房屋面积预测房价。

七、聚类分析

聚类分析就是把相似的数据对象分成一组,不同的组之间差异较大。

聚类分析可以帮助我们发现数据中的内在结构,更好地理解数据。当我们在数据分析中遇到需要对数据进行分组的情况,聚类分析绝对是首选。

宝子们,以上就是我给大家分享的7种超实用的数据分析模型啦!其实数据分析并没有想象中那么难,只要掌握了这些模型,你也能轻松搞定数据分析。如果你还想了解更多数据分析的知识,或者想要系统学习数据分析,提升自己的能力,不妨试试报名一下相关课程哦。跟我一起在探潜数据分析课程遇到更多志同道合的小伙伴,一起学习进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值