- 博客(31)
- 收藏
- 关注
原创 Nature Methods | CellNEST——利用注意力机制解析空间转录组中的细胞间中继网络
(Cell Neural Networks on Spatial Transcriptomics),一种基于图注意力网络和对比学习的深度学习模型,能够高精度识别单细胞分辨率的配体-受体对通讯及多细胞参与的中继网络(如配体-受体-配体-受体级联信号)。然而,现有的分析方法(如COMMOT、NICHES)仍然存在局限:要么仅能分析细胞群体水平的通讯,要么依赖预先定义的信号通路知识,无法自主发现新的通讯模式。——它不仅整合了空间信息,还利用深度学习自动识别潜在的通讯模式,包括传统方法难以捕捉的中继网络。
2025-07-15 16:34:51
429
原创 Nature子刊 |HERGAST:揭示超大规模空间转录组数据中的精细空间结构并放大基因表达信号
HERGAST将整个组织切片分割成可处理的小块,在这些小块上迭代训练一个先进的模型,然后在整个切片上进行推断,并基于模型的输出进行下游分析,作者将这个策略框架称为“分-迭-治”(Divide-Iterate-Conquer, DIC)。(2)在稀疏数据场景下(50%随机丢失数据点),传统基于空间邻域关系的图网络模型ARI从0.549骤降至0.271,而HERGAST仅从0.664降至0.613,证明其对数据稀疏性的强鲁棒性。其在肿瘤免疫微环境解析和空间标志物发现中的应用,为精准医学提供了新工具。
2025-07-13 18:54:05
687
原创 Arc Institute提出首个AIVC虚拟细胞模型STATE
细胞对扰动的反应是理解生物机制和选择潜在药物靶点的基石。为了解决这些挑战并推动虚拟细胞模型的发展,2025年6月24日Arc Institute联合斯坦福、UCSF等顶尖机构发布了其第一代虚拟细胞模型STATE,这是一种灵活且富有表达力的机器学习架构,用于建模细胞异质性和跨不同数据集的扰动效应。其科学意义在于,STATE 能够同时建模细胞群体的异质性,并学习如何将从已知细胞背景中学到的扰动效应泛化到未曾见过的细胞类型和实验条件中,从而为系统性地理解和预测复杂生物系统中的细胞行为提供强大的工具。
2025-07-10 16:17:35
800
原创 震撼发布!Google DeepMind推出AlphaGenome实现多模态基因调控预测,重塑功能基因组学研究范式
3)以及内生的“可解释性”分析模块。AlphaGenome在基因表达调控预测方面实现了多维度的突破,不仅能够精准预测eQTL的效应强度(预测相关性从0.39提升至0.49),还能准确判断其调控方向(AUROC达到0.80),并揭示潜在的调控机制。AlphaGenome在 GTEx 数据集中的多个剪接异常案例中展现出卓越的预测能力,其不仅准确重现了外显子跳跃(exon skipping)和新型剪接连接(novel splice junction)的形成过程,还能深入解析其背后的序列motif调控机制。
2025-07-04 16:49:20
905
原创 什么是单细胞测序?
10X Genomics平台:单细胞转录组测序、单细胞转录组测序 +VDJ、FFPE单细胞转录组测序和单细胞ATAC测序。高效、精准、可靠:先进的测序平台和数据分析能力,确保结果准确可靠,帮助科研人员获取深度信息。更多科研测序服务包括基因组测序 、 转录组测序 代谢组检测、蛋白组检测、微生物组检测等。免疫学研究:从单细胞水平解析免疫系统的复杂性,探索T细胞、B细胞等免疫细胞的动态变化。国产 SeekOne 平台:单细胞转录组测序和全序列转录组测序。强大的数据分析平台,支持在线分析,实时反馈。
2025-06-12 19:53:20
276
原创 Nature子刊|ChatNT:生物多模态LLM破壁者!统一DNA/RNA/蛋白质分析的对话式AI
结合DNA编码器(Nucleotide Transformer v2)与英文解码器(Vicuna-7b),通过投影层将生物序列嵌入到语言模型空间,实现跨模态理解。在Nucleotide Transformer基准(18项任务)中,ChatNT平均马修斯相关系数(MCC)达0.77,超越原模型(0.69)。:当前的基础模型(如Nucleotide Transformer)需针对每个任务单独微调,导致模型碎片化,无法跨任务泛化。:模型通过统一训练目标(交叉熵损失)同时学习27项任务,无需针对新任务重新训练。
2025-06-10 19:09:14
865
原创 Nature Methods | OmiCLIP:整合组织病理学与空间转录组学的AI模型
Loki平台的开发:基于OmiCLIP模型构建的一个多模态分析平台,旨在整合组织病理学图像(H&E染色图像)和转录组学数据,为生物医学研究提供强大的分析工具,它提供了五个关键功能:组织对齐、通过批量RNA测序或标记基因进行组织注释、细胞类型分解、图像-转录组学检索和从H&E染色图像预测空间转录组学基因表达。ST-bank数据集的构建:研究者们策划了一个包含220万对组织图像和转录组学数据的数据集,涵盖了32个器官,用于训练OmiCLIP模型,整合组织学和转录组学。
2025-06-05 17:31:53
861
原创 百万级临床试验数据库TrialPanorama发布!AI助力新药研发与临床评价迎来新基石
试验方案 (Trial Protocols): 药物 (Drugs)、疾病条件 (Conditions)、生物标志物 (Biomarkers)、分组设计 (Dispositions/Arms)、主要终点 (Endpoints)。1. 测试模型:GPT-4o, GPT-4o-mini, O3-mini (专注重推理), LLaMA-3.3-70B-Instruct, LLaMA-3.1-8B-Instruct。试验元数据 (Trial Metadata): 标题、摘要、申办方、状态、阶段、开始年份等。
2025-06-03 19:30:52
643
原创 单细胞注释前沿:CASSIA——无参考、可解释、自动化细胞注释的大语言模型
使用包含金标准注释的8个数据集评估CASSIA和其余6个注释方法的准确性,根据注释与参考注释的分类距离将注释结果分为完全正确、部分正确或不正确。结果显示,在基准数据集上,与现有方法相比,CASSIA将完全正确的注释提高了12-41%,与次优方法相比,综合正确注释(完全正确或部分正确)提高了9-29%。单细胞注释的挑战:单细胞RNA测序(scRNA-seq)分析中,细胞类型注释是关键步骤,但现有方法(基于参考/无参考)需专业知识和人工干预,且结果不一致、难解释。
2025-05-30 17:27:52
1649
原创 单细胞测序细胞注释全攻略:选择自动工还是手动验证,附常见细胞Marker基因
近年来,单细胞测序技术在生物医学研究中迅速发展,揭示了生命活动前所未有的细节。然而,面对浩如烟海的单细胞数据,如何准确地给细胞群体贴上“身份证”——即细胞类型注释,成为了研究者的关键一步。本文将详细讲解单细胞测序中细胞类型注释的两大策略:自动工具与手动验证,并附上常用细胞Marker基因,助你轻松入门单细胞测序数据分析。通过上述组合策略,研究人员既能高效处理数据,又能确保结果的准确性和可靠性。:依赖于参考数据库的完整性,可能忽略稀有或新发现的细胞类型。:节省时间,快速得到初步结果。(以Seurat为例)
2025-05-26 18:41:23
1256
原创 CellFM——基于1亿人类细胞转录组数据的大规模基础模型
结合经典扰动模型GEARS,CellFM在Adamson和Norman数据集上预测基因扰动后的差异表达基因(DEGs),Pearson相关系数(PCC)和均方误差(MSE)均优于基线模型(图3b-c)。在零样本(zero-shot)设置下,CellFM在二元分类任务(如剂量敏感性、甲基化状态)中平均准确率优于UCE和scGPT(提升5.68%和5.86%),并在基因本体(GO)的多类功能预测中AUPR值领先(图2a-d)。低秩自适应(LoRA)模块:在微调阶段冻结大部分参数,仅更新低秩矩阵,提升效率。
2025-05-23 17:25:58
574
原创 Science Advances | MIST:一种新型深度学习框架可解释的单细胞T细胞多组学整合分析工具
在COVID-19患者PBMC数据中,MIST通过联合潜在空间鉴定出严重/危重症患者特有的T细胞簇(如簇22-24),这些细胞高表达干扰素响应基因和NKG2D共刺激受体KLRK1(图6F, H),提示其在病毒免疫中的重要作用。在10x Genomics的20万CD8+ T细胞数据集中,MIST成功重建了稀疏的scRNA-seq数据(图1B, D),并通过GEX潜在空间实现了跨供体的细胞混合(图2A),而原始表达数据未能完全消除批次效应(图2B)。
2025-05-21 18:04:03
907
原创 Nature | 基因密码中的远古回响:东南亚人群基因组揭示人类演化新篇章
通过MSMC2和SMC++方法推断的群体动态表明,MSEA人群在15-20万年前共享了与东亚人群相似的群体历史,并在末次冰期经历了持续的瓶颈效应(有效群体大小NeNe约为1,000)(图3e)。此外,研究还发现了一个MSEA特异性富集的7,439 bp缺失(位于PEX14基因内含子区),其等位基因频率在MSEA人群中为14%,而在其他人群中罕见或缺失(图4e)。其中24,622个SVs(26.3%)为首次发现(图2i),这些SVs的功能注释显示,20.8%位于调控区域,1.0%位于编码区(图2h)。
2025-05-16 17:34:58
529
原创 解码生命语言:深度学习模型TranslationAI揭示RNA翻译新规则
模型包含32层扩张卷积结构,能够处理长达2000 nt的侧翼序列,输出每个位置作为TIS、TTS或非翻译位点(NS)的概率(图1A,补充图S1)。此外,模型对依赖宿主翻译机制的病毒(如埃博拉病毒)的ORF预测效果良好(图4B),但对SARS-CoV-2等复杂基因组的预测准确性较低(图4C),可能与多顺反子结构有关。,一个基于深度学习的模型,能够直接从全长度mRNA序列预测翻译起始位点(TIS)和终止位点(TTS),并揭示了翻译调控的新规律!密码子身份:替换经典起始或终止密码子会显著降低预测分数(图1F)。
2025-05-15 17:14:52
630
原创 突破传统!ICGI框架:大语言模型与因果推理结合,精准识别癌症基因
CGI-GPT受限于LLM的训练范式,在探索基因-癌症因果关系方面的表现存在局限,其性能依赖于基础LLM的能力,在准确量化不确定性和执行干预方面面临挑战,手动设计的提示可能并非因果基因识别的最佳选择。:利用GPT-4o mini的知识提示,结合特定任务的提示和指导,通过输入基因-疾病查询对,检索基因信息并转化为LLM友好的基因感知上下文,再与链式思考提示整合形成最终提示,输入到GPT-4o mini中,判断特定基因与癌症之间是否存在因果关系,并提供详细的自然语言解释。图2:CGI-GPT 性能的定量分析。
2025-05-13 18:49:45
735
原创 【AI颠覆生命科学】从AlphaFold到虚拟细胞:人工智能正在「拆解」生命的语言
而这仅仅是个开始——最近几个月,我们已进入基础模型发展的超加速阶段:这些基于海量数据预训练的模型能够执行多种任务,帮助人类理解蛋白质、RNA、DNA、配体等生物分子的结构、功能、演化规律与设计原理,以及它们之间的相互作用。这篇文章系统梳理了人工智能在生命科学领域的革命性突破:从AlphaFold破解蛋白质折叠难题,到多组学生命语言大模型(LLLM)实现分子设计、基因编辑和细胞图谱解析,再到多智能体协作的"虚拟实验室"和"AI虚拟细胞"(AIVC)的构想。图1:生物领域的深度学习模型和通用多模态LLM。
2025-05-12 17:48:04
745
原创 多模型智慧碰撞:mLLMCelltype 引领单细胞注释新纪元
对于缺乏立即高共识的簇,框架启动迭代审议过程,LLM 共享结构化的论点,讨论特定标记的重要性,考虑潜在的通路参与,并评估组织背景如何影响细胞身份,每个 LLM 通过权衡同行提供的证据和推理来完善其分类,专用的共识检查器 LLM 在每轮之后评估参与模型之间的一致性程度,如果达到共识,则过程终止,得出最终注释和置信度分数,否则,审议继续进行或标记为模糊不清。未来的研究方向应集中在开发更复杂的方法来检测潜在的集体错误,如集成结构化的外部知识库,开发受自一致性方法启发的高阶推理评估系统等。》目前发表在预印本平台。
2025-05-09 17:31:51
906
原创 《Nature》重磅发布:VG161 溶瘤病毒引领肝癌治疗新变革
肝细胞癌(HCC)是全球范围内严重的恶性肿瘤之一,预后极差,5 年生存率约为 18%。尽管靶向药物和免疫疗法取得了一定进展,但二线治疗失败后的治疗选择仍然有限。为此,研究人员开展了一项关于 VG161 溶瘤病毒的 1 期临床试验,旨在评估其在难治性肝细胞癌患者中的安全性和疗效。
2025-05-07 13:22:00
533
原创 中国癌症研究首超美国!Nature最新数据发布
从数据来看,2024年中国癌症研究产出的“Share值”同比大幅增长19%,而美国仅增长5%,中国在2019—2024年的癌症研究产出增长趋势尤为显著,自2020年起便一路攀升,于2024年实现关键性反超。中国在癌症研究领域的崛起,是科研人员长期辛勤耕耘、国家战略大力支持以及科研生态持续优化的结果,这一成就不仅提升了中国在全球癌症研究领域的影响力,也为全球癌症防治事业注入了新的活力,为未来癌症研究的国际合作与竞争格局带来了深远影响。在癌症研究领域,中国与美国长期以来一直是全球科研竞争的焦点。
2025-05-06 17:31:22
220
原创 疾病基因定位新突破:TGFM精准锁定基因与组织
TGFM作为一种强大的工具,能够帮助研究人员在疾病相关基因和组织的精细定位上取得进展。这不仅有助于揭示复杂疾病的遗传基础,还可能为新治疗策略提供潜在的靶点。随着eQTL数据集的不断扩展和完善,TGFM的应用前景将更加广阔,有望在未来的疾病遗传学研究中发挥更加重要的作用。互动福利:你对TGFM有什么看法?
2025-04-30 13:12:15
872
原创 多模态深度学习模型MuMo精准预测胃癌抗HER2治疗响应,登顶Nature子刊
MuMo模型代表了一种利用人工智能能力提高胃癌患者对HER2靶向治疗或HER2靶向联合免疫治疗反应预测准确性的有前景的策略。通过综合多模态数据,该研究朝着实现个性化治疗策略迈出了重要一步,展示了多种模态与人工智能相结合的潜力,为未来的肿瘤学研究指明了令人兴奋的方向。参考文献互动福利:你对MuMo有什么看法?
2025-04-28 16:02:08
996
原创 空间机械转录组学的突破:解析细胞命运与组织形态的奥秘
在发育生物学中,细胞命运的决定和组织形态的形成是极为复杂的过程。传统的单细胞测序技术虽然揭示了细胞状态转换的分子机制,但这些过程并非孤立发生,而是受到细胞间信号传导和机械力的共同影响。近期,发表在《Nature Methods》上的一篇题为 ***“A computational pipeline for spatial mechano-transcriptomics”***的研究论文,提出了一种创新的计算框架,将空间转录组学与图像力学分析相结合,为理解细胞行为和组织形态提供了新的视角。
2025-04-27 13:45:43
769
原创 探秘空间基因表达的 “地形图”:GASTON 算法重磅来袭!
GASTON 算法如同一把神奇的钥匙,为科研人员开启了解析空间基因表达模式的新大门。它不仅在多种组织和空间转录组技术平台上展现了卓越的性能,更为肿瘤微环境、神经发育等领域的研究提供了前所未有的深度洞察。相信在不久的将来,GASTON 将在生命科学的更多领域大放异彩,助力科研人员不断探索生命的奥秘!互动福利:你对GASTON的哪个部分最感兴趣?
2025-04-25 10:38:27
941
原创 重磅!TabPFN:小规模表格数据的革命性预测模型
在生物医学、材料科学、经济学和气候科学等领域,表格数据(以行和列组织的电子表格)无处不在。传统上,梯度提升决策树(如XGBoost、CatBoost)在过去20年主导了表格数据的预测任务。然而,来自弗莱堡大学的研究团队近日在《Nature》发表了一项突破性研究,提出了一种名为TabPFN(Tabular Prior-data Fitted Network)的表格基础模型,在小规模数据集(≤10,000样本)上以惊人的速度(2.8秒)大幅超越所有现有方法。
2025-04-24 11:48:57
1322
原创 【前沿速递】AI驱动的预测性生物标志物发现:颠覆性对比学习框架PBMF,让临床试验成功率翻倍!
在精准医疗时代,如何从海量临床数据中挖掘出真正预测治疗响应的生物标志物,而非仅与预后相关的“噪音”?AstraZeneca团队最新发表在《Cancer Cell》的AI框架PBMF(Predictive Biomarker Modeling Framework)给出了革命性答案!通过对比学习技术,PBMF在免疫治疗等复杂场景中表现惊艳,甚至能用早期临床试验数据预测III期结果,生存风险降低15%!PBMF 是一种基于对比学习的神经网络框架,旨在自动、系统且无偏地探索潜在的预测性生物标志物。
2025-04-23 18:44:16
697
原创 【重磅更新】Tabula Sapiens 2.0发布!28个人体器官、110万细胞单细胞图谱揭秘转录因子、衰老与性别差异
重新定义人体复杂性认知构建精准细胞注释工具的基础支持疾病研究和个性化治疗开发获取原文:后台私信领取。
2025-04-23 16:22:38
764
原创 AI+生物学的革命:多模态基础模型如何重塑分子细胞生物学?
从ChatGPT到AlphaFold,AI正在重塑科学研究的范式。多模态基础模型的提出,标志着生物学研究可能从"假设驱动"迈入"数据驱动"的新时代。尽管前路充满挑战,但这场AI与生物学的碰撞,或许会让我们离生命的本质更近一步。
2025-04-20 10:31:23
758
原创 《Science》家族全揭秘!7大顶刊覆盖哪些前沿领域?一文读懂选刊攻略
Science》由美国科学促进会(AAAS)直接出版,是其最具影响力的学术资产。AAAS作为非营利组织,通过《Science》及其子刊推动全球科学传播。
2025-04-19 17:45:59
411
原创 「单细胞+PPI」革命性整合!Nature Methods新作scNET:双视角GNN破解
技术误差导致假零值,掩盖真实基因共表达信号;:仅凭表达数据难以捕捉通路和蛋白复合体的动态变化。
2025-04-19 12:12:15
659
原创 SpatialAgent,让空间组学进入“自动驾驶“时代!
2025年4月6日,Genentech公司Aviv Regev团队联合斯坦福大学、哈佛大学、清华大学等全球顶尖机构,在bioRxiv发表重磅研究《SpatialAgent: An autonomous AI agent for spatial biology》。该研究成功开发了SpatialAgent——一个由大语言模型(LLM)驱动的自主AI系统,能够独立完成空间生物学研究的全流程工作,涵盖实验设计、多模态数据分析乃至数据驱动的科学假设生成。
2025-04-13 12:02:34
629
原创 Nature Health即将上线!附子刊领域匹配表
Nature Health 优先考虑在资源有限环境中进行的研究,包括南半球的低收入和中等收入国家以及高收入国家的弱势群体。高性价比:《Nature Communications》🟢医学/临床 神刊:《Nature Medicine》Nature子刊多达50+本,但选错领域直接秒拒!顶配:《Nature Biotechnology》新宠:《Nature Mental Health》老牌强刊:《Nature Materials》交叉风口:《Nature Synthesis》定位:全球健康+公共卫生+卫生政策。
2025-04-11 12:21:11
166
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人