七个步骤带你轻松搭建商用 AI Agent

当我们着手打造商用AI代理时,通常会遇到以下一些问题:

  • 在众多平台和工具中,我应该选择哪一个?是 Coze、Dify 还是 LangGraph?或者是自己开发一套系统?
  • 在开发过程中有哪些关键的注意事项?
  • 我的数据应该如何存储才最合适?
  • 为什么有些网页内容无法通过特定工具抓取?

本文将为你提供一份详细的指南,分解构建 AI 代理的七个关键步骤:需求梳理、选择合适的软件、提示工程的实施、数据库的选择和管理、构建用户界面、进行测试评估,以及最后的部署发布。我们将一步步带你深入了解,让你能够更加顺利地开发出适合自己需求的人工智能助手。

1、清晰定义需求

在构建AI助手的首要步骤是清晰定义需求。

首先,我们需明确AI助手的目的:它是为了解决什么问题?例如:

  • 如果你是一位自媒体从业者,可能希望AI助手帮助处理一些重复性工作,比如寻找对标内容、追踪热点、进行内容分析、草拟初稿等。这可以让你将更多精力投入到创意和内容创作上。
  • 如果你是一位贸易公司的老板,可能需要AI助手来整合来自不同平台的订单信息,进行产品询价和价格比较。

你应专注于那些重复性高、机械性强、不需深思熟虑的任务。越详细越好。你还可以与AI工具进行交流,利用它形成初步草稿后再进一步完善。

你是一位工作流梳理专家,请帮我梳理<自媒体编辑>这个角色在日常工作中需要重复干的工作,并标记处哪些可以由AI来协助,哪些主要我来去做,先以表格的形式(工作内容/AI协助/人工来做)输出,当我认为表格的内容完整后,我回复“继续”,你再以mermaid流程图的形式输出,每个流程节点需要注明是否可由AI协助完成,流程图为横向。

选择合适的工具

根据上述工作流,我们需要列出必要的工具:

  • 数据采集需要网页抓取工具
  • 发布文章需要对接如微信公众平台等社交媒体

工具的选型关键在于能够让AI助手在不同系统之间自动化地执行任务,减少人工操作。

2. 选择AI Agent开发平台和大模型

在AI Agent的构建过程中,选择合适的开发平台和大型语言模型(LLM)是关键的第二步。

选择AI Agent开发平台

在众多的无代码AI Agent开发平台中,比如Dify、Coze、FastGPT,我们该如何选择适合我们的平台呢?

  • Coze:只能在云端使用,无法本地部署,适合不需要高度自定义且重视云端服务的用户
  • Dify:完全开源,无使用限制,适合技术能力强且需要高度自定义的团队,但在知识问答方面能力较弱
  • FastGPT:虽有使用限制,但在知识回答能力上较强,适合需要强大问答支持的场景

更高级的开发平台如LangGraphCrewAI,允许AI自我规划并执行任务,但需要一定的编程技能。是否选择这些平台,取决于我们的具体需求,也可以考虑结合使用多个平台。我们需要深入了解每个平台的优势与劣势,确保所选平台能够满足特定场景的需求。

选择大模型

在选择大模型方面,市场上既有国际知名的模型如OpenAI的模型、ClaudeGemini,也有国内的Kimi通义千问以及近期受关注的DeepSeek。此外,还有开源模型如LLaMAGrok,以及小型模型如Mistral

每种模型都有其特定的优势和适用场景:

  • 国际模型通常在多语言处理和广泛的知识领域表现优秀
  • 国内模型在本土化信息处理上更具优势,对中文内容的理解和回应更加精准
  • 开源模型提供了高度的可定制性,适合有能力进行深度开发的团队
  • 小型模型则在资源消耗和运行效率方面有优势,适合资源有限或对响应速度有高要求的应用。

选择合适的模型需考虑我们的具体需求,如处理语言的种类、预算限制、以及是否需要高度定制化等因素。

选择合适的AI Agent模型和工具

在众多AI模型中选择最合适的,取决于你的具体场景和需求。

选择合适的AI模型

如果你的应用场景不涉及隐私数据,那么使用国际领先的大模型如OpenAI和Claude是一个优秀的选择,因为这些模型提供了广泛的能力和较高的准确性。如果任务主要涉及翻译或总结文章等,国内大模型如DeepSeek也能提供相似的效果,且性价比较高。

在选择模型时,你还可以考虑以下几个问题:

  • 模型大小的影响:不同大小的模型(如8K、32K)在能力、速度和资源消耗上有所不同。
  • 本地部署与云部署:如果选择本地部署,你需要了解所需的硬件配置;云部署则需要考虑计费模式和数据隐私问题。
  • 模型的推理能力:不同模型的推理速度和准确性可能有差异。
  • 混合使用模型:根据需要,可以混合使用不同的模型来优化性能和成本。
工具选择

在AI Agent开发中,选择合适的工具至关重要。工具的选择依赖于你需要AI进行哪些操作,例如生成图片、搜索信息或与外部系统对接。

  • 有API接口的工具:这类工具易于集成和使用,许多AI开发平台如Coze和Dify已集成了多种工具,允许直接配置和使用。
  • 无API接口的工具:对于这类工具,可以利用RPA(机器人流程自动化)技术来实现。RPA通过模拟浏览器操作来自动执行任务,非常适合处理没有直接API支持的系统。

3、提示工程

提示工程是构建AI Agent时的核心环节,良好的提示词可以显著提高大模型输出的质量和准确性。

提示词的重要性

好的提示词具有以下几个关键优势:

  • 提高准确性:帮助AI Agent更准确地理解任务需求。
  • 节省资源:有效的提示词可以减少token的消耗,从而降低运行成本。
  • 保持连贯性:帮助AI Agent理解上下文,确保对话的流畅和连贯性。

因此,掌握如何编写有效的提示词至关重要。

提示词框架

在具体实施时,可以考虑这几种主要的提示词框架,它们分别是CRISPE、BROKE、ICIO和CoT(Chain-of-Thought)

CRISPE 框架
  • Capacity and Role(角色和能力) :明确AI在交互中应扮演的角色,如教育者、翻译者或顾问。
  • Insight(背景) :提供足够的背景信息,帮助AI理解其在特定情境下的作用。
  • Statement(任务) :直接说明AI需要执行的具体任务。
  • Personality(个性) :设定AI的回复风格和格式,使其更符合用户的期望和场景需求。
  • Experiment(实验) :如有需要,可以让AI提供多个处理结果示例,供用户选择。
BROKE 框架
  • Background(背景) :如,“你正在为一家初创科技公司撰写关于其最新产品的新闻稿”。
  • Role(角色) :指定AI作为“新闻稿撰写者”,专业地处理任务。
  • Objectives(目标) :明确任务目标,如“撰写一篇突出产品独特卖点的吸引人新闻稿”。
  • Key Result(关键结果) :设定回答的具体期望,如“使用正式和专业的语言”。
  • Evolve(改进) :在AI给出初步回答后,提出可能的改进方向。
ICIO 框架
  • Instruction(任务) :清晰指定AI执行的具体任务,如“翻译一段文本”。
  • Context(背景) :提供任务的相关背景,帮助AI更好理解其上下文。
  • Input Data(输入数据) :明确AI处理的具体数据,如特定的文本或信息。
  • Output Indicator(输出格式) :规定期望的输出格式和风格。
CoT (Chain-of-Thought) 框架
  • Few-Shot CoT:通过提供少量示例,描述AI应如何步骤地思考问题,从客户需求出发,逐步解答。
  • Zero-Shot CoT:仅通过增加“让我们一步步地思考”这样的提示词,引导AI按顺序思考。
与大模型的交互规则
  • 分段输出:长文内容分多次输出通常比一次性输出的质量更高。
  • 使用符号分隔:不同的符号可以帮助大模型更好地区分和理解不同的信息部分。
  • 任务拆解:对于复杂任务,将其拆解为若干步骤,引导大模型分步执行,通常效果更佳。
  • 明确输出限制:清晰规定输出内容的字数、格式、风格和语言难度,以确保结果符合预期。

掌握这些框架和规则将大大增强你的AI Agent的效能,使其在各种情境下都能发挥最佳性能。

4、存储选型

在构建AI Agent的过程中,确定合适的存储方案是关键的第四步,因为AI Agent运行过程中会产生大量的数据,如聊天记录、采集数据等。

非技术人员的存储选项

对于非技术背景的用户,推荐使用如飞书的多维表格等工具。这些工具的优势在于:

  • 高可视化:直观的界面,使得操作更加简单易懂。
  • 易于操作:用户无需深厚的技术背景即可快速上手。
  • 对接简单:轻松与其他系统或平台集成。

然而,这类工具也有其局限性:

  • 扩展性有限:当数据量增加时,读取速度可能变慢。
  • 处理能力有限:对于复杂的业务逻辑处理能力不足。
技术人员的存储选项

对于具备技术背景的用户,推荐使用更为专业的数据库系统,如:

  • MySQL:一种广泛使用的关系型数据库,适合需要严格数据结构和复杂查询的应用。
  • NoSQL:如MongoDB等,适用于处理大规模数据集合,特别是当数据模型不固定时。

这些数据库系统提供了更强大的数据处理能力和更高的可扩展性,能够支持复杂的查询和大数据量的存储,适合需要进行深度数据分析和业务逻辑处理的场景。

选择标准

在选择合适的存储解决方案时,应考虑以下几个因素:

  • 数据量:预期的数据量大小决定了需要的存储系统的扩展性
  • 业务需求:不同的业务场景可能需要不同类型的数据库支持
  • 技术能力:用户的技术背景也是选择数据库时的重要考虑因素

在选择合适的存储方式时,需要根据具体需求和技术能力,选择最适合的存储方案,以确保数据的有效管理和使用。

5、构建UI界面

构建用户界面(UI)是创建AI Agent的第五步,这一步骤关键在于提供与用户互动的前端界面。选择合适的平台和工具对于开发一个高效、用户友好的UI至关重要。

使用现成平台的UI选项
  • Coze平台:提供了DIY(自助定制)的界面选项,允许用户根据自己的需求定制UI。这种方式适合那些希望完全控制用户体验的开发者
  • Dify平台:提供了预制的界面,这些界面简单易用,但不支持修改。如果你追求快速部署而不需要深度定制,这是一个不错的选择
独立开发UI

如果现成的解决方案不能满足你的需求,你可以选择独立开发UI,并通过API与AI Agent后端服务进行对接。这种方式提供了最大的灵活性和控制权。例如,你可以使用如Cursor这样的AI编程平台来定制开发自己的界面

多Agent管理

在Coze和Dify平台上,你可以定义多个AI Agent。如果需要同时管理多个Agent,自主开发的UI可以让你在一个统一的界面上进行操作和管理,这样可以极大地提高工作效率和用户体验

为何需要自己开发UI
  • 个性化定制:自主开发的UI可以完全根据你的品牌和用户需求进行定制。
  • 灵活性和扩展性:可以随时调整和升级界面功能,以适应业务发展和用户反馈。
  • 多Agent整合:一个定制的UI可以整合多个AI Agent的管理和操作,使得管理更为集中和高效。

可视化页面最重要的是确保用户界面能够提供流畅、直观的用户体验。

6、测试评估

在AI Agent的开发过程中,测试评估是确保系统稳定性和输出质量的关键第六步。有效的测试和评估能够确保AI Agent不仅运行无误,还能提供准确可靠的用户回复。

测试的重要性

测试主要是为了确保AI Agent在实际操作中不会出现技术故障,如程序错误或是大模型无法处理特定用户请求的情况。通过系统的测试,可以及早发现并修复潜在问题,提升系统的稳定性和可靠性。

评估的目标

评估则着重于验证AI Agent的输出质量,包括回答的正确性和响应的适当性。在评估过程中,不断优化AI Agent的性能至关重要,这包括提高回答的精确度和降低token消耗,以减少运行成本。

使用LangSmith进行监控和测试

LangSmith是一个工具,可以在多个方面支持AI Agent的测试和评估:

  • 调试和测试:它提供工具帮助开发者发现并解决程序中的错误,确保AI Agent能够正确执行任务。
  • 评估:通过设计和执行各种测试案例,可以系统地评估AI Agent在实际应用中的表现,如问题回答的准确性和处理请求的可靠性。
  • 监控:LangSmith能够实时监控AI Agent的运行状态,包括处理请求的速度和操作成本,这对于维护系统效率和成本效益非常重要。
  • 日志记录:此功能能记录AI Agent的所有操作细节,包括接收的问题、给出的回答及其它相关参数,这些信息对于后续的分析和系统优化提供了宝贵数据。

7、部署发布

部署发布是AI Agent开发流程的最后一步。不同的开发平台有各自的部署方式:

  • Coze:允许直接发布到豆包、小程序等平台
  • Dify:可以直接发布为Web应用或嵌入到你的系统中

如果你是独立开发的AI Agent,可以选择购买服务器进行独立部署。这为你的AI Agent提供了完全的控制和自定义的灵活性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值