在需要高可解释性且数据复杂的场景,比如医疗、法律、工业等,机器学习+SHAP是个潜力巨大的研究方向,目前也已经成为了学术热点。
这是因为这种结合拥有提供模型可解释性、公平性检测、模型调试和优化、业务场景适配等能力,在增强机器学习模型的透明度和可信度方面遥遥领先,解决了我们对可解释性的迫切需求。
Machine Learning in Modeling Disease Trajectory and Treatment Outcomes: An Emerging Enabler for Model-Informed Precision Medicine
方法:论文介绍了机器学习在疾病轨迹和治疗结果建模中的应用,特别是在精准医学中的作用。其中,SHAP方法被用于解释ML模型的预测结果,通过计算每个特征对预测的贡献来提高模型的可解释性,帮助非技术背景的人员理解模型输出。
创新点:
- 用机器学习分析患者数据,分亚群助精准试验设计。
- 机器学习结合多数据预测病情与疗效,SHAP解释增强可信度。
- 机器学习挖数据,评估排除标准影响,支持放宽试验资格标准。
Machine learning and interactive GUI for concrete compressive strength prediction
方法:论文使用多种机器学习模型预测混凝土抗压强度,并通过SHAP分析确定影响预测的关键因素,最终开发出一个用户友好的GUI供实际应用。
创新点:
- 使用多种机器学习模型预测混凝土抗压强度,其中CatBoost模型表现最佳。
- 应用SHAP分析揭示各输入变量对预测结果的影响,发现混凝土龄期是关键因素。
- 开发了图形用户界面,使设计人员能快速经济地预测混凝土抗压强度。
Rebuilding Trust in Black-Box Models: Using Explainable Machine Learning (SHAP) to Analyze Feature Impact Across Models for Bankruptcy Prediction
方法:论文使用机器学习结合SHAP方法,对瑞典酒店行业的公司破产数据进行分析,通过处理数据不平衡和解释模型预测,将复杂的机器学习模型转化为可解释的系统,以提高决策的透明度和可信度。
创新点:
- 提出了一种结合机器学习和SHAP的新方法,用于提高公司破产预测的准确性和可解释性。
- 利用SMOTE-ENN技术处理数据不平衡问题,优化了模型的训练效果。
- 通过SHAP分析,揭示了关键财务比率对破产预测的影响,为金融机构提供了更透明的决策支持。
Machine Learning for Explanation of Subgrid Convective Precipitation: A Case Study over CONUS Using a Convection-Allowing Model and SHAP Analysis
方法:论文使用XGBoost机器学习模型检测和估计美国本土次网格对流性降水特征,并通过SHAP分析解释模型预测,揭示关键影响因素。
创新点:
- 利用XGBoost机器学习模型,有效检测和估计次网格对流性降水特征,实现85%的F1分数。
- 引入SHAP分析,解释模型预测,揭示云液态和冰态水含量等关键预测因子的重要性。
- 通过季节和区域分析,发现模型在不同环境条件下的性能差异,为改进模型提供依据。