- 博客(455)
- 收藏
- 关注
原创 成长见证站 | 博二生死线:靠两篇中文EI苟不住!6个月强攻IEEE TIM拿下SCI二区“毕业门票“
摘要:H同学在博二期间面临毕业压力,通过6个月完成SCI二区论文并成功发表在IEEE TIM期刊。关键帮助来自科研导师和班主任的系统指导。咕泡科技提供全流程论文辅导,包括选题、创新点设计、实验验证到投稿发表,配备资深专家和督学服务,已帮助多位学员高效发表高质量论文。其特色包括1对1指导、同领域顶级专家支持及24小时学术顾问服务,在人工智能领域积累了良好口碑。
2025-07-17 17:56:03
162
原创 【时间序列】传统统计时间序列分析方法
本文系统介绍了传统时间序列分析方法及其应用。首先阐述了ARIMA模型的原理、发展历程及适用场景,包括自回归、差分和移动平均三个核心组件。其次详细解析了季节性分解与指数平滑方法,比较了加法/乘法模型的特点。然后深入探讨了状态空间模型和卡尔曼滤波技术,包括线性/非线性系统的处理方法。最后总结了这些方法在金融经济、制造业、零售电商及公共服务等领域的应用价值,指出传统方法在理论基础扎实、计算效率高和可解释性强等方面的优势,同时展望了与传统方法与现代智能算法融合的发展方向。
2025-07-17 17:52:11
655
原创 机器学习在人工智能中的核心地位及基础算法解析
例如,在语音识别中,机器学习算法通过分析大量的语音数据,学习语音信号与文字之间的映射关系,从而实现精准的语音转文字功能;从技术逻辑来看,传统的计算机程序是由人类预先编写好固定的指令,机器只能按照既定的规则执行操作,无法应对未知的、复杂的情况。例如,通过收集房屋的面积、地理位置、房龄等特征数据以及对应的房价,利用线性回归算法构建模型,就可以根据新房屋的特征预测其大致房价。例如,在金融风控中,通过构建决策树模型,根据客户的收入、负债、信用记录等特征,判断客户的违约风险等级,为贷款审批提供依据。
2025-07-17 17:45:56
327
原创 人工智能基础概念大揭秘:从定义到应用场景
人工智能(AI)作为当前科技发展的重要领域,正在深刻改变人类生活。文章系统介绍了AI的定义、核心要素(数据、算法、算力)和关键技术(机器学习、深度学习、自然语言处理、计算机视觉)。重点阐述了AI在医疗、金融、交通、教育等领域的广泛应用,如辅助诊断、风险评估、自动驾驶和个性化学习等。随着技术发展,AI将持续推动社会智能化进程,为人类生活带来更多便利和创新。文章还提供了AI学习资料的获取方式,帮助读者深入了解这一前沿领域。
2025-07-17 17:40:34
423
原创 Meta新注意力机制给 Transformer 升了级!底层架构的革命!
本文探讨了Transformer架构的核心原理与应用。传统序列模型存在并行性差等问题,而Transformer通过自注意力机制和多头注意力结构,实现了高效的并行计算和长距离依赖建模。文章详细解析了Transformer的Encoder-Decoder结构、位置编码机制及其优势,如并行计算、长距离建模和可扩展性。Transformer不仅推动了BERT、GPT等预训练模型发展,还广泛应用于机器翻译、文本生成、语音识别等领域。该架构标志着深度学习从序列建模转向注意力建模的新时代,是理解现代AI技术的关键基础。
2025-07-10 16:50:18
582
原创 我如何用一份模型地图,避开了90%的深度学习坑
摘要:深度学习初学者常面临理论与实战脱节的困境。本文提供两张导航图:1) 应用场景与模型对应表,清晰列出图像分类、目标检测等六大领域的核心模型;2) 各方向必备知识清单,如目标检测需掌握IoU计算,医学影像需了解DICOM格式。特别指出医学影像分割的三大要点:3DU-Net选择、Z-Score标准化和DICOM处理。建议采用"项目驱动法",每个方向投入1周进行最小可行性尝试,通过实践拆解模型原理。最后推荐系统化学习路径,帮助快速掌握企业级实战能力。(148字)
2025-07-10 15:40:08
666
原创 独自一人,怒发顶会!
【科研论文辅导服务推荐】在学术竞争日益激烈的当下,咕泡科技提供从选题到发表的一站式论文辅导服务。500+专家导师覆盖AI全领域,采用系统化教学体系,包括创新点设计、实验验证、论文润色等全流程指导。服务特色:1对1专属督学、24小时学术顾问、3-6个月高效产出。适合有升学、求职、评职称需求的科研人员,已累计服务5万+学员。通过专业辅导助力突破学术瓶颈,提升论文质量与发表效率。
2025-07-10 15:36:28
354
原创 人工智能学习路线+配套资·料获取
【AI学习资料免费领取】包含机器学习、深度学习、计算机视觉、自然语言处理等完整学习路线,以及100G精选资料(实战教程、大模型资源、学科书单、学术论文)。为避免链接失效,请扫描下方二维码添加助理微信获取全套资源。资料涵盖从零基础到实战应用的系统内容,适合AI学习者一站式获取所需资源。
2025-07-10 15:31:19
259
原创 深度学习在计算机视觉中的应用:从AlexNet到ResNet
本文回顾了深度学习在计算机视觉领域的发展历程。从2012年AlexNet突破性地采用深度卷积神经网络,到VGGNet探索网络深度和宽度,再到ResNet通过残差学习解决深层网络训练问题,各个标志性模型不断推动着计算机视觉技术的进步。文章还介绍了深度学习在图像分类、目标检测、语义分割和风格迁移等任务中的成功应用,并展望了轻量化模型、注意力机制、多模态融合等未来发展方向。深度学习已彻底改变了计算机视觉领域,并将持续引领技术创新。
2025-07-10 15:30:33
672
原创 卷积神经网络(CNN):图像识别的“超级大脑”,原理与应用
卷积神经网络(CNN)已成为计算机视觉领域的核心技术,被誉为图像识别的"超级大脑"。本文系统介绍了CNN的发展历程、结构组成、经典架构及其应用。CNN凭借局部感知、参数共享和多层结构等优势,在图像分类、目标检测、语义分割等任务中表现卓越。文章详细解析了LeNet-5、AlexNet、VGGNet和ResNet等经典架构,并探讨了CNN在训练优化、轻量化模型、注意力机制等方向的发展趋势。随着技术进步,CNN将在多模态融合、可解释性等领域持续突破,为图像处理提供更强大的支持。
2025-06-30 16:45:04
739
原创 图像特征提取:从 HOG 到 SIFT,计算机视觉的“指纹”
本文介绍了计算机视觉中两种经典图像特征提取方法:HOG和SIFT。HOG通过计算梯度方向直方图描述边缘信息,适用于行人检测等任务;SIFT通过检测关键点并提取特征描述符,具有尺度/旋转不变性,适用于图像匹配、目标识别等场景。文章详细阐述了二者的原理、提取过程和应用差异,并列举了实际应用案例,为计算机视觉任务选择合适的特征提取方法提供了参考。
2025-06-30 16:40:47
556
原创 色彩空间转换:RGB、HSV、YUV,图像处理的“调色板”
本文介绍了RGB、HSV和YUV三种常见色彩空间的特点及其转换方法。RGB适用于显示和图像采集,HSV更适合颜色分割和识别,YUV则常用于视频编码。文章详细讲解了各色彩空间的定义、特点、应用场景以及相互转换的数学公式,并通过颜色分割、视频编码和图像增强等案例展示了色彩空间转换的实际应用价值,为图像处理任务提供了重要的技术参考。
2025-06-30 16:38:48
432
原创 图像处理基础:灰度化、二值化、边缘检测,开启视觉之旅
摘要: 本文介绍了图像处理中的三个基础技术:灰度化、二值化和边缘检测。灰度化通过加权平均法将彩色图像转换为灰度图像,简化数据并保留结构信息。二值化通过阈值法将灰度图像转为黑白图像,突出目标并去除背景干扰,常用方法包括全局阈值和自适应阈值。边缘检测(如Sobel、Canny算子)捕捉图像轮廓,用于目标识别和分割。这些技术在字符识别、医学影像和自动驾驶中广泛应用,是计算机视觉的重要预处理步骤,为后续分析奠定基础。
2025-06-30 16:35:37
864
原创 计算机视觉入门:从像素到智能,一文读懂核心概念
计算机视觉是一门研究如何使计算机通过图像或视频等视觉信息来理解世界的科学。它的目标是模拟人类视觉系统的功能,让计算机能够像人类一样从视觉场景中获取、处理和理解。信息计算机视觉的起源可以追溯到 20 世纪 60 年代,当时计算机科学家们开始尝试让计算机识别简单的几何形状。经过几十年的发展,计算机视觉已经从最初的基础研究逐渐发展成为一个涵盖众多领域、具有广泛应用的成熟技术。计算机视觉技术作为人工智能领域的一个重要分支,已经取得了巨大的进步,并在众多领域得到了广泛的应用。
2025-06-30 16:33:00
646
原创 线性回归与逻辑回归:机器学习中的“双子星”,原理与应用
本文介绍了机器学习中两种基础算法:线性回归和逻辑回归。线性回归用于预测连续数值,通过最小化均方误差建立线性模型,适用于房价预测等回归任务。逻辑回归主要用于二分类问题,通过Sigmoid函数输出概率值,常用于垃圾邮件检测等分类场景。二者区别在于:任务类型、输出值、损失函数和对异常值的敏感性。虽然模型简单高效,但对非线性关系拟合能力有限。文章通过房价预测和垃圾邮件检测案例,展示了两种算法的实际应用,为初学者提供了实用参考。
2025-06-30 15:44:42
547
原创 机器学习基础:监督学习、无监督学习与强化学习,一文读懂
本文系统介绍了机器学习三大基础方法:监督学习通过标记数据训练模型,适用于分类和回归预测任务;无监督学习分析数据内在结构,用于聚类和降维等探索性任务;强化学习通过环境交互优化决策策略。文章详细阐述了各类方法的核心概念、典型算法、应用场景及优缺点,指出监督学习依赖标注数据但解释性强,无监督学习无需标记但结果不稳定,强化学习适合决策任务但训练复杂。为读者理解机器学习基础知识提供了全面参考框架。
2025-06-30 15:36:17
484
原创 生成对抗网络(GAN):生成器与判别器的“对抗赛”,创造无限可能
摘要:生成对抗网络(GAN)是深度学习领域的重要突破,通过生成器和判别器的对抗训练实现了高质量数据生成。本文系统阐述了GAN的原理结构、训练过程、优势挑战及其在图像生成、文本处理等领域的应用。尽管存在训练不稳定、模式坍塌等问题,但GAN以其出色的生成能力为人工智能创造力开辟了新方向。随着技术发展,GAN有望在医疗影像、虚拟现实等领域发挥更大作用,推动生成模型的持续创新。
2025-06-30 15:34:25
895
原创 长短时记忆网络(LSTM):解决长程依赖问题,让模型“记住”更多
本文深入探讨了长短时记忆网络(LSTM)的原理、结构及其在解决长程依赖问题上的优势。传统RNN在处理长序列时存在梯度消失问题,而LSTM通过遗忘门、输入门和输出门的协同作用,有效管理信息流,缓解了梯度消失问题。文章详细解析了LSTM单元结构及门控机制的计算公式,阐述了其在自然语言处理、时间序列预测和语音识别等领域的广泛应用。同时指出LSTM面临的计算复杂度高、可解释性差等挑战,并展望了未来研究方向。LSTM为序列数据处理提供了强大工具,在深度学习领域具有重要地位。
2025-06-30 15:32:49
399
原创 Transformer架构:自然语言处理的“革命者”,开启新时代
Transformer架构:自然语言处理的革命性突破 Transformer架构凭借自注意力机制和多头注意力机制,彻底改变了自然语言处理领域。它克服了传统RNN的局限性,实现了并行计算和全局依赖捕捉,在机器翻译、文本生成等任务中取得突破性进展。尽管面临计算资源消耗大和可解释性不足等挑战,但通过模型压缩、可解释性研究等方向的发展,Transformer架构将继续推动NLP领域的创新,为人工智能应用开辟更广阔的前景。
2025-06-30 15:29:19
506
原创 循环神经网络(RNN):序列数据的“时间机器”,解决梯度消失
本文探讨了循环神经网络(RNN)在序列数据处理中的应用及其挑战。首先介绍了RNN的基本原理及其在自然语言处理、时间序列预测等领域的重要作用,指出传统RNN存在梯度消失问题。随后详细分析了LSTM和GRU这两种改进方法如何通过门控机制解决梯度消失问题。文章还列举了RNN在文本生成、机器翻译、语音识别等具体应用场景中的表现,同时指出其面临的数据依赖、计算复杂度高等挑战。最后展望了数据增强、模型优化等未来研究方向,强调RNN在序列数据处理领域将持续发挥重要作用。
2025-06-30 15:27:09
460
原创 卷积神经网络(CNN):图像处理的“魔法棒”,原理与应用
摘要:卷积神经网络(CNN)已成为图像处理领域的革命性技术,从医疗影像到自动驾驶均有广泛应用。本文解析了CNN的核心原理,包括卷积层特征提取、池化层降采样、全连接层分类决策。探讨了CNN在图像分类、目标检测、分割及生成任务中的成功应用,同时指出其面临的数据依赖、计算量大等挑战,并展望了弱监督学习、模型优化等未来发展方向。这一"数字魔法棒"正持续推动图像处理技术的进步。
2025-06-30 15:25:05
713
原创 激活函数全解析:Sigmoid、Tanh、ReLU,深度学习中的“调味剂”
本文深入剖析了三种经典神经网络激活函数:Sigmoid、Tanh和ReLU。Sigmoid函数输出范围(0,1),适用于二分类问题,但存在梯度消失和非零中心化问题;Tanh改进为零中心化(-1,1),但仍面临梯度消失;ReLU通过f(x)=max(0,x)解决了梯度消失,计算效率高,但存在"死亡ReLU"问题,为此衍生出LeakyReLU等改进版本。实际应用中,浅层网络可用Sigmoid/Tanh,深层网络推荐ReLU及其变体,需根据具体任务选择。激活函数的发展为神经网络优化提供了更多可
2025-06-30 15:23:18
835
原创 回归分析实战:从理论到代码实现,深度学习入门必备
本文介绍了机器学习中的回归分析技术,重点讲解了线性回归的原理与实现方法。文章首先阐述了回归分析的基本概念,包括线性回归模型、均方误差损失函数和梯度下降优化算法。随后通过Python代码示例,演示了从数据生成、模型训练到评估预测的完整流程,包括手动实现和利用Scikit-Learn库两种方式。文章旨在帮助初学者掌握回归分析的核心方法,为深度学习奠定基础,并提供了相关参考资料供进一步学习。
2025-06-30 15:20:46
647
原创 深度学习核心要素:数据、算法与算力的完美融合
摘要:本文探讨了深度学习发展的三大核心要素——数据、算法与算力的协同作用。数据作为基石,其质量与标注直接影响模型性能;算法作为灵魂,不同结构的优化与改进决定了模型效能;算力作为加速器,通过硬件和云计算提升训练效率。三者完美融合是推动深度学习突破的关键:数据驱动算法优化,算法促进算力提升,算力支持更大规模的数据处理。随着这些要素的持续发展,深度学习将在更多领域发挥变革性作用,为人工智能发展带来新机遇。
2025-06-30 15:19:32
471
原创 Transformer 架构:自然语言处理的革命,开启新时代
Transformer架构彻底革新了自然语言处理领域,通过自注意力机制实现并行处理和长序列依赖捕捉。其编码器-解码器结构包含多头注意力机制和前馈神经网络,在机器翻译、文本生成等任务中表现卓越。相比传统RNN模型,Transformer具有更强的并行计算能力和上下文理解能力。学习Transformer需要数学基础、编程能力及持续实践,但其强大的性能使其成为当今NLP领域的核心技术。这一革命性架构为语言处理开辟了新纪元,掌握它将有助于解决各类自然语言任务。
2025-06-27 12:00:59
603
原创 长短期记忆网络(LSTM):解决梯度消失,让模型“记住”更多
LSTM:攻克长序列处理的神经网络利器 摘要: 为解决传统RNN在长序列数据处理中的梯度消失问题,长短期记忆网络(LSTM)通过引入细胞状态和输入门、遗忘门、输出门三大门控机制,实现了对信息流的精准控制。LSTM不仅能有效保留长期依赖关系,还在自然语言处理、时间序列预测和语音识别等领域展现出卓越性能。该文系统介绍了LSTM的起源发展、核心结构、工作原理及优势特点,并提供了入门学习路径建议。随着深度学习技术的发展,LSTM已成为处理序列数据的关键工具,掌握其原理和应用对解决实际问题具有重要意义。(148字)
2025-06-27 11:58:13
611
原创 循环神经网络(RNN):序列数据处理的关键,从基础到应用
本文系统介绍了循环神经网络(RNN)的基础知识和核心技术。首先阐述了RNN的发展历程及在处理序列数据方面的优势,详细剖析了其包含输入层、隐藏层和输出层的网络结构,以及前向传播和反向传播的工作原理。针对RNN训练中的梯度消失/爆炸和长序列依赖问题,重点讲解了LSTM、GRU等改进模型及注意力机制等解决方案。最后列举了RNN在自然语言处理、时间序列预测和音频处理等领域的典型应用,并给出了学习建议:掌握数学基础、选择合适框架、注重实践和持续学习。全文为初学者提供了RNN技术的系统入门指导。
2025-06-27 11:54:12
871
原创 卷积神经网络(CNN):图像识别的利器,原理深度剖析
《揭秘卷积神经网络:图像识别的核心技术》摘要: 卷积神经网络(CNN)是图像识别领域的核心算法,其灵感源自生物视觉系统。典型CNN结构包含卷积层(特征提取)、池化层(降维处理)和全连接层(分类输出)三大部分。从1998年LeNet-5到2012年革命性的AlexNet,CNN架构持续进化,在图像分类、目标检测等任务中表现卓越。初学者可通过学习数学基础、编程技能,使用TensorFlow等框架实践入门。随着硬件发展和数据积累,CNN技术已广泛应用于安防、医疗、自动驾驶等领域,成为推动人工智能发展的重要引擎。
2025-06-27 11:49:56
772
原创 深度学习入门:神经网络的神秘面纱,一文带你揭开!
深度学习正以势不可挡之势席卷全球,神经网络作为其核心技术,具有广泛应用前景。文章介绍了神经网络的起源与发展,从20世纪40年代的MP模型到如今深度学习的爆发式增长;阐述了其基本结构包含输入层、隐藏层和输出层;详细解释了前向传播和反向传播的工作原理;列举了多层感知机、卷积神经网络、循环神经网络等常见类型;展示了图像识别、自然语言处理等典型应用案例;并为初学者提供了学习建议。神经网络虽具复杂性,但持续学习和实践能够掌握这一强大技术。
2025-06-27 11:46:05
898
原创 被导师放养的研究生最后都怎么样了?
【摘要】一位经历"放养式"培养的博士分享科研成长历程:硕士时导师因病缺席,通过自学和请教完成学业;博士阶段同样面对导师出国的情况,凭借已有经验独立完成研究。如今作为导师,他特别理解学生的困惑,强调自强不息的重要性。针对科研困境,推荐咕泡科技的专家辅导服务,提供从选题到发表的全流程指导,助力突破科研瓶颈。(149字)
2025-06-17 10:17:27
337
原创 韦东奕:对数学感兴趣!你:对SCI秃头?90天换种“活法”
韦神”韦东奕的名字又一次刷屏了——就在上周,他与合作者在数学顶级期刊《Forum of Mathematics, Pi》上发表论文,证明了超临界散焦非线性波动方程在特定维度条件下的爆破解存在性,为非线性波动理论提供了新突破。他的成功,并非来自遥不可及的天赋,而在于对学术的纯粹态度、系统性钻研方法,以及被精心保护的科研土壤。本课程课程内容是按照互联网大厂公司的架构体系设计的,符合企业以及市场的要求。环境护持:北大为他创造安静治学环境,隔离舆论喧嚣,护其专注前行。,帮助你在这复杂而漫长的路途中走得快又好。
2025-06-17 10:09:32
319
原创 2025年还在用KAN网络的也是神人了...
KAN模型研究持续升温,2025年涌现多篇创新成果,包括港中文的U-KAN、ICASSP2025收录论文等。当前研究主要聚焦模型改进(如动态门控)、跨领域应用(如医学影像、电力系统)及工具开发。重点成果包括:U-KAN整合KAN到U-Net提升医学图像处理;PIKANs实现电力系统高效建模;cmKAN框架完成精准颜色匹配;DeepKANSeg优化遥感图像分割。这些研究均体现KAN在精度、效率和可解释性方面的优势,预示其在AI4Science时代的广阔前景。相关论文及代码可关注公众号获取。
2025-06-17 10:05:12
906
原创 爆肝整理!20+时序数据集+完整源码,SCI一区很难不稳!
【150字摘要】精选6大时间序列预测基准数据集:1)葡萄牙320户家庭每小时用电量数据(26,304条);2)德国耶拿气象站10分钟级21项气象参数(52,696点);3)电力变压器温度/负载监测数据(ETTh/ETTm);4)美国CDC 20年流感监测数据;5)8国26年每日汇率波动记录;6)旧金山高速公路每小时交通流量(17,544条)。数据覆盖能源、气象、医疗、金融等领域,包含特殊时段记录(如夏令时用电),为算法验证提供标准化基准。配套提供预处理代码和多领域研究论文。
2025-06-17 10:04:20
379
原创 1+1>2!小波变换重构GNN底层逻辑,实现更高效精准的时空协同建模!
摘要:近期研究将小波变换与图神经网络(GNN)结合,提出ASWT-SGNN和ST-GWNN等创新模型。前者通过自适应谱小波变换实现多尺度邻域信息聚合,采用多项式近似降低计算复杂度;后者融合图小波与时空卷积,通过多时间间隔图捕捉动态关联。两类模型均突破传统GNN的固定滤波器限制,利用小波变换的局部特性增强特征提取能力,并通过残差连接、稀疏表示等技术优化计算效率,在社交网络等时空数据建模中展现显著性能提升。(149字)
2025-06-17 10:02:12
734
原创 ICLR 2025 | TwinsFormer:通过两个交互组件重构时间序列内在依赖关系
【摘要】ICLR2025研究提出Twinsformer模型,创新性地通过双流交互机制解决时间序列预测中趋势与季节性成分的耦合问题。该模型在传统分解方法基础上,采用残差减法与渐进式交互策略,使两成分相互修正补充。实验表明,Twinsformer在13个基准数据集上表现优异,长期预测任务中18次排名11项第一,短期预测也保持领先。其模块化设计可即插即用至现有Transformer架构,几乎不增加计算开销,为时序预测提供了新思路。(149字)
2025-06-17 10:00:27
994
原创 idea稍微一改 ,域泛化/域适应就又中了CVPR!
域泛化研究进展:提升模型跨域适应能力的关键技术 摘要:域泛化技术旨在构建能适应未知环境的通用模型,已成为机器学习研究热点。近期突破性成果包括:GGA算法通过梯度一致性优化和退火策略解决域冲突问题;PEER框架利用模型间正则化缓解单源域训练中的特征失真。这些方法在PACS等基准测试中表现优异,尤其GGA能与现有技术结合进一步提升性能。研究显示,通过创新性优化策略和模型交互机制,可以有效提升模型在多样环境中的泛化能力,为计算机视觉等领域的实际应用提供了新思路。当前域泛化技术正从复杂方法向高效轻量级解决方案发展。
2025-06-17 09:58:41
608
原创 计算机视觉基础知识点:开启视觉智能之旅
计算机视觉是人工智能的重要分支,致力于让计算机理解和处理图像视频信息。本文介绍了计算机视觉的基础知识,包括图像表示(像素矩阵、RGB模型)、预处理(灰度化、二值化等)、特征提取(边缘检测、纹理特征等)以及深度学习应用(CNN、预训练模型)。文章还列举了图像分类、目标检测、人脸识别等典型应用场景,并推荐了OpenCV、TensorFlow等开发工具。通过深度学习技术,计算机视觉在自动驾驶、医疗影像等领域取得重大突破。
2025-06-16 14:32:28
997
原创 计算机入门:开启数字世界的大门
本文介绍了计算机的基础知识,包括硬件(CPU、内存、硬盘等)和软件(操作系统、应用软件)的组成结构。针对初学者,文章建议从了解计算机原理、学习操作系统和办公软件入手,推荐了Windows、macOS等系统以及Word、Excel等常用软件。对于有编程兴趣的读者,可以尝试Python等语言。强调实践操作的重要性,如组装电脑、安装系统等。文章指出循序渐进的学习方法能帮助初学者逐步掌握计算机技能。
2025-06-16 14:30:18
576
原创 吹爆!我居然只花了3天就学会了PyTorch!
《PyTorch实用教程》(第二版)历时多年完成,系统涵盖深度学习工程师所需知识。全书结构化分为入门、应用、落地三部分,提供CV、NLP、LLM等丰富案例,兼顾理论与实践。亮点包括清晰的进阶路径、多领域实战项目、完整的工程化部署方案,适合AI学习者、产品经理及跨领域人士。关注公众号可领取本书资源。
2025-06-13 11:34:33
203
原创 入选ICLR‘25 Spotlight!深度强化学习(DRL)迎来新突破!
深度强化学习研究近期在顶会顶刊成果丰硕,清华团队提出的SmODE网络通过ODE平滑机制显著提升控制性能,复旦同济联合的社区布局生成方法展示了多智能体应用潜力。研究热点集中在算法改进(如结合注意力机制/GNN)和跨领域应用(如机器人足球控制、无人机边缘计算),其中ICLR2025的Spotlight论文和Science子刊的足球机器人研究尤为突出。当前趋势还包括伦理安全等社会需求导向的研究。可关注基于ODE的平滑网络、多目标优化等创新方法,多个团队已实现模拟到现实的零样本迁移突破。
2025-06-11 16:51:30
506
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人