人工智能概述
人工智能(AI)是"Artificial Intelligence"的缩写,指人类创造出来的能够模拟人类行为、思维,处理特定问题的智能系统。
当前AI学习两大方向
- AI原理学习:自然语言处理(NLP)、机器学习(ML)、深度学习(DL)
- AI工具应用:各类大模型应用(如CHATGPT、Claude、文心一言等聊天模型,MJ、SD等绘画模型)
AI技术关系图
图示人工智能、机器学习、深度学习之间的关系
系统学习路径
1. 基础知识
数学基础
- 高等数学:
- 函数与极限
- 导数与微分
- 中值定理
- 泰勒展开式
- 积分学
- 函数极值分析
概率论与统计学
- 随机变量类型与基本概念
- 概率与概率密度
- 联合分布、边缘分布、条件分布
- 先验概率与后验概率
- 均值、方差、协方差等统计量
- 常见分布函数
- 参数估计方法(极大似然估计等)
- 假设检验
- 多元统计分析
- 随机过程与马尔科夫模型
编程语言(推荐Python)
- 基础语法:
- 基本数据类型
- 关键字与标识符
- 运算符
- 控制语句
- 优势:
- 语法简单易学
- 丰富的AI库支持
- 应用广泛
2. 算法与策略
- 机器学习基础
- 深度学习基础
3. 专业方向深耕
自然语言处理(NLP)
- 定义:计算机对自然语言形、音、义的处理
- 应用:各类聊天大模型的基础
计算机视觉
- 能力范围:
- 图像分类
- 目标检测
- 语义分割
- 实例分割
- 目标追踪
优质学习资源
视频课程
课程名称 | 提供方 | 特点 |
---|---|---|
《Machine Learning》 | DeepLearning.AI | 机器学习经典入门课 |
《生成式AI学习路径》 | 谷歌 | 大语言模型基础知识及应用 |
《ChatGPT Prompt工程》 | DeepLearning.AI & OpenAI | Prompt编写技巧 |
《机器学习基石》 | 林轩田 | 理论基础扎实 |
《机器学习技法》 | 林轩田 | 进阶技术 |
《机器学习课程》 | 李宏毅 | 通俗易懂 |
《程序员深度学习实战》 | Fast.ai | 实践导向 |
推荐书籍
- 《机器学习》 - 周志华(经典入门)
- 《统计学习方法》 - 李航
- 《机器学习实战》
- 《Scikit-Learn与TensorFlow机器学习实用指南》
- 《利用Python进行数据分析》
- 《深度学习》(花书,深度学习权威著作)
其他资源
- Python官方文档
- 技术社区:CSDN、GitHub等
学习建议
实践出真知:理论学习的同时务必多动手实践,通过项目巩固知识。