从零开始如何学习人工智能?

人工智能概述

人工智能(AI)是"Artificial Intelligence"的缩写,指人类创造出来的能够模拟人类行为、思维,处理特定问题的智能系统。

当前AI学习两大方向

  1. AI原理学习:自然语言处理(NLP)、机器学习(ML)、深度学习(DL)
  2. AI工具应用:各类大模型应用(如CHATGPT、Claude、文心一言等聊天模型,MJ、SD等绘画模型)

AI技术关系图


图示人工智能、机器学习、深度学习之间的关系

系统学习路径

1. 基础知识

数学基础
  • 高等数学
    • 函数与极限
    • 导数与微分
    • 中值定理
    • 泰勒展开式
    • 积分学
    • 函数极值分析
概率论与统计学
  1. 随机变量类型与基本概念
  2. 概率与概率密度
  3. 联合分布、边缘分布、条件分布
  4. 先验概率与后验概率
  5. 均值、方差、协方差等统计量
  6. 常见分布函数
  7. 参数估计方法(极大似然估计等)
  8. 假设检验
  9. 多元统计分析
  10. 随机过程与马尔科夫模型
编程语言(推荐Python)
  • 基础语法:
    • 基本数据类型
    • 关键字与标识符
    • 运算符
    • 控制语句
  • 优势:
    1. 语法简单易学
    2. 丰富的AI库支持
    3. 应用广泛

2. 算法与策略

  • 机器学习基础
  • 深度学习基础

3. 专业方向深耕

自然语言处理(NLP)
  • 定义:计算机对自然语言形、音、义的处理
  • 应用:各类聊天大模型的基础
计算机视觉
  • 能力范围:
    • 图像分类
    • 目标检测
    • 语义分割
    • 实例分割
    • 目标追踪

优质学习资源

视频课程

课程名称提供方特点
《Machine Learning》DeepLearning.AI机器学习经典入门课
《生成式AI学习路径》谷歌大语言模型基础知识及应用
《ChatGPT Prompt工程》DeepLearning.AI & OpenAIPrompt编写技巧
《机器学习基石》林轩田理论基础扎实
《机器学习技法》林轩田进阶技术
《机器学习课程》李宏毅通俗易懂
《程序员深度学习实战》Fast.ai实践导向

推荐书籍

  1. 《机器学习》 - 周志华(经典入门)
  2. 《统计学习方法》 - 李航
  3. 《机器学习实战》
  4. 《Scikit-Learn与TensorFlow机器学习实用指南》
  5. 《利用Python进行数据分析》
  6. 《深度学习》(花书,深度学习权威著作)

其他资源

  • Python官方文档
  • 技术社区:CSDN、GitHub等

学习建议

实践出真知:理论学习的同时务必多动手实践,通过项目巩固知识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值