- 博客(18)
- 收藏
- 关注
原创 2025必读!多Agent大模型协作全景图:一文速读未来趋势
*《Scaling Large Language Model-based Multi-Agent Collaboration》**是这一方向的代表性工作,它深入分析了多Agent系统在规模化过程中面临的挑战,并提出了相应的解决方案。这一研究方向的核心关注点包括:Agent数量与系统性能的关系、通信开销的优化、协作网络的拓扑结构设计、以及动态Agent管理机制。随着技术的不断成熟和应用的不断深入,多Agent技术将成为人工智能领域的重要发展方向,为构建更智能、更协调、更高效的未来社会提供技术支撑。
2025-08-07 16:28:33
1009
原创 刚入门深度学习?先别急着学框架!0 基础必看的学习顺序(从 Python 到数学再到实战)
整个阶段,我建议可以做小项目,或者实现小案例为目标,比如“做一个识别手写数字的小程序”、“用图像识别识别猫狗”,有目标比盲学有效很多。确实很多时候学习完基础知识点,很快会忘记,所以也要多多记录。《机器学习+深度学习》和人工智能60G入门学习包【1.超详细的人工智能学习大纲】:一个月精心整理,快速理清学习思路!【2.基础知识】:Python基础+高数基础【3.机器学习入门】:机器学习经典算法详解【4.深度学习入门】:神经网络基础(CNN+RNN+GAN)扫码获取。
2025-08-06 17:34:38
267
原创 第一次参加Kaggle比赛一定要看!(附kaggle8、9月最新比赛推荐)
从丰富简历的角度来看,Kaggle比赛在全球的认可度都很高,一个好看的比赛排名绝对是申请利器!kaggle是全球顶级的权威性数据科学竟赛平台,也是当今最大的数据科学家、机器学习开发者社区,其行业地位独一无二。如果你曾经玩过什么让人上瘾的游戏,你就知道循序渐进的目标的重要性。开始的时候,我们建议你独自工作。此外,一旦你掌握了机器学习的技术技能,你就可以与其他可能比你有更多领域知识的人合作,进一步扩展你的机遇。最后,我们将介绍几个参与 Kaggle 的最受欢迎的诀窍,希望能帮你享受你的 Kaggle 时光。
2025-08-05 17:51:23
1166
原创 讲透一个强大算法模型,Transformer !!!
哈喽,大家好~咱们今天结合ARIMA,好好聊聊Transformer与ARIMA结合的混合时间序列建模问题~传统的方法(比如ARIMA)像是用老式温度计,比较擅长抓住天气的总体趋势和季节性变化,也就是那种“直觉上认为今天比昨天热一点”的感觉。但天气其实既有简单的趋势,也有一些突发的、复杂的变化。Transformer 就像是一个“超级侦探”,能通过分析大量历史数据找出隐藏在数据中的复杂模式和依赖关系,尤其是那些非线性的、看起来有点“捉摸不定”的变化。当你把两者结合时,思路是这样的:先用ARIMA:捕捉数据中
2025-08-04 14:43:04
918
原创 人工智能领域,目前有哪些热门方向,什么方向比较好发论文?
深度神经网络(Deep Neural Networks,DNNS):包括卷积神经网络(CNNS)、循环神经网络(RNNS)、Transformer等新型网络结构的设计与优化,以及预训练模型(如BERT、GPT系列等)及其迁移学习应用等。人工智能领域,作为近年来的热点!然而,论文的质量和影响力不仅仅取决于研究方向本身,还与研究的实际贡献、实验验证的有效性、理论深度和解决问题的独特性等因素密切相关。同时,密切关注国际顶级会议和期刊的最新动态,了解研究趋势与热点,也是提升论文发表成功率的关键所在。
2025-04-22 19:47:57
1003
原创 YOLO已经悄悄来到v12,首个以Attention为核心的YOLO框架问世
在相同的计算预算下,基于 CNN 的架构比基于 attention 的架构快约 2-3 倍,这极大限制了 attention 在 YOLO 系统中的应用,由于 YOLO 体系高度依赖高推理速度。首先,作者提出了一种简单而高效的区域注意力模块(area attention, A2),该模块在保持大感受野的同时,以最简单直接的方式降低了 attention 的计算复杂度,从而提升了计算速度。其次,作者引入了残差高效层聚合网络(R-ELAN),以解决 attention(主要是大规模模型)带来的优化难题。
2025-04-22 19:36:16
297
原创 如何从浅入深理解transformer?
首先 transformer 的输入是所有的文字序列一齐输入的,而且这个序列在变换成矩阵后,会有一个很大的维度数据,也就是从一个单一的 Token 变成了512、1024、2048 维以上的数据,这样在实际的训练中,i可能很容易得到某一个 token 与其它的token 数据的关联关系。接下来我们要谈的就是 Transformer 要怎么优化了,因为这个东西要消耗大量的计算资源,从简单的结构上看,这个计算是与输入的数量,通常称为 context length,也就是上下文的长度成平方级的关系。
2025-04-21 21:00:53
969
原创 卷积神经网络(CNN)原理深度剖析,带你彻底搞懂CNN!
将第二次全链接的结果进行最后一次运算,这种运算可能是线性的也可能是非线性的,最终每个位置(一共十个位置,从0到9)都有一个概率值,这个概率值就是将输入的手写数字识别为当前位置数字的概率,最后以概率最大的位置的值作为识别结果。而我们只考虑第一个通道,也就是从第一个7×7的二维矩阵中提取特征,那么我们只需要使用每组卷积核的第一个卷积核即可,这里可能有读者会注意到Bias,其实它就是偏置项,最后计算的结果加上它就可以了,最终通过计算就可以得到特征图了。但是我们人眼看到的图像和计算机处理的图像是一样的么?
2025-04-19 16:24:38
937
原创 这次终于能把深度学习学会了!零基础60天学习计划分享!
这是一份学长根据自己学习的经验,和踩过的坑,肝了几个大夜修改了n多次,肝出来的AI人工智能零基础学习大礼包(包含深度学习、机器学习、CV、NLP、大模型等等)。函数、极限与连续、导数与微分、微分中值定理与导数的应用、函数的积分、定积分的应用、向量与空间解析几何、多元函数微分学、多元函数微分学的应用、常微分方程。学习这部分需要 Python和数学基础、Python函数、Python面向对象编程、推荐跟着 Python菜鸟教程学习,学到内置函数这章就可以了。左边是注释,右边是代码,对初学者非常友好。
2025-04-19 16:17:40
623
原创 全网最全!大家经常说的大模型,到底什么是大模型,大模型的具体应用,一文说清楚
大模型通常有超多的参数。参数就像是模型的 “大脑细胞”,参数越多,它能记住和处理的信息就越多。SAM(Segment Anything Model,2023):Meta 家的 “图像分割神器”,用鼠标在图片上点一下,就能精准圈出物体轮廓,不管是天上飞的鸟、地上跑的车,还是复杂的建筑结构,都能一键分割。Sora(2023):Google 的 “魔法视频生成器”,输入文字描述就能生成短视频,比如 “一只会飞的粉色大象在彩虹上跳舞”,它能生成流畅的动画,连大象翅膀煽动的频率都很自然,未来可能颠覆短视频创作行业。
2025-04-19 15:35:41
502
原创 写给程序员的一封信:程序员2025年Q1季度真实求职感受反馈及职业发展建议!
如果你在边缘业务或者创新孵化部门,建议你积极争取转到公司核心业务部门,因为一旦环境再差,大概率边缘业务或者创新孵化部门会被砍掉,等到那个时候就基本上只能被动离职了。人一旦进入了舒适区就很容易放松,不想主动学习,但是要记住没有一家公司能让你待一辈子,不管腾讯、阿里还是华为,都有工作10年的老员工被裁的案例。如果你的行业是创新性质比较强的行业,那么你就需要不断的坚持学习,总是赶在别人的前面,把该学习的东西全部学会,成为公司的中流砥柱。如果企业耍赖不给赔偿,该仲裁仲裁,该起诉起诉,一般企业都会怂。
2025-04-18 20:05:45
328
原创 28张图全解深度学习知识!
然后分割训练、开发和测试集,并预期可能到达的优化水平。ReLU:可以理解为阈值激活(spiking model 的特例,类似生物神经的工作方式),该函数很常用,基本是默认选择的激活函数,优点是不会导致训练缓慢的问题,并且由于激活值为零的节点不会参与反向传播,该函数还有稀疏化网络的效果。右边:深度网络的特点是需要大量的训练数据和计算资源,其中涉及大量的矩阵运算,可以在 GPU 上并行执行,还包含了大量的超参数,例如学习率、迭代次数、隐藏层数、激活函数选择、学习率调整方案、批尺寸大小、正则化方法等。
2025-04-18 18:00:03
1006
原创 NLP是什么?一文带你搞懂“自然语言处理(NLP)”看这篇就够了!
从图3-7所示的循环神经网络示意图中可以看到,输入数据(绿色部分)之间是有前后关联的,在处理数据的时候每一个隐藏层的神经元(蓝色部分)都会接收从上一个时刻传来的历史信息,这也就意味着循环神经网络拥有了像人类一样的记忆能力,这是一个重要的突破!在这种情况下,BERT的出现让此前的循环神经网络和卷积神经网络等方法黯然失色,自此之后,自然语言处理领域几乎被 BERT实现了“大一统”,无论是在学术界还是工业界,自然语言处理研究和应用的突破几乎离不开BERT的变体。另一种则是“南京市长”和“江大桥"。
2025-04-18 17:56:50
669
原创 超模表现!准确率近100%!注意力机制+多尺度卷积横扫SOTA
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。多尺度卷积通过并行卷积核组与特征金字塔架构,可同步捕获微米级纹理与宏观结构变化,具有层级化的特征抽象能力。而注意力机制实现了噪声抑制与关键信号聚焦的精准平衡,可以作为高维特征空间的动态信息过滤器。未来研究或将突破超异构计算架构下的软硬件协同优化瓶颈,开辟神经形态芯片上的多尺度注意力融合新范式。相关的最新前沿研究,供大家学习与参考,
2025-04-17 18:10:26
433
原创 大模型新玩法:Transformer+因果推理,解锁可解释性新高度
当前,许多研究致力于结合二者的互补特性,如 CausaFormer利用因果图约束掩码策略,通过因果结构引导的预训练在自动驾驶轨迹预测中消除70%的伪相关性误差。这类混合架构正在重塑药物发现、智能运维等关键领域的技术范式,为因果可解释性理论带来了新的突破。Transformer 在序列建模领域构建了黄金标准,但其黑箱特性导致的因果混淆问题使得其可解释性和可靠性较差。,供大家学习与参考,
2025-04-17 18:09:01
244
原创 有口皆碑!LSTM+PINN新架构,让顶会论文比发朋友圈还简单!
在应对复杂挑战时,研究者通过融合PINN的物理建模与LSTM的时序分析能力,开创了跨领域解决方案。两者虽聚焦不同领域,却共享核心优势:将PINN的物理机理建模能力与LSTM的动态数据处理优势相结合,既保留理论严谨性,又增强数据驱动的灵活性。这种跨学科方法论突破了单一模型的局限,推动复杂系统建模从依赖经验或纯数据驱动,转向“物理+数据”的智能融合范式,为多领域难题提供了可迁移的解决方案。正成为破解复杂系统建模难题的关键技术。,大部分都是一区二区成果,且有代码,在人工智能与科学研究的交叉前沿,
2025-04-17 18:05:32
157
原创 YOLO已经悄悄来到v12,首个以Attention为核心的YOLO框架问世
在相同的计算预算下,基于 CNN 的架构比基于 attention 的架构快约 2-3 倍,这极大限制了 attention 在 YOLO 系统中的应用,由于 YOLO 体系高度依赖高推理速度。首先,作者提出了一种简单而高效的区域注意力模块(area attention, A2),该模块在保持大感受野的同时,以最简单直接的方式降低了 attention 的计算复杂度,从而提升了计算速度。其次,作者引入了残差高效层聚合网络(R-ELAN),以解决 attention(主要是大规模模型)带来的优化难题。
2025-04-16 20:28:15
240
原创 最全总结!2024时间序列领域相关顶会 !!
特别适用于数据点之间存在时间依赖关系的情况,比如股票市场预测、气象预报等。因此在学术界与工业界都有广泛应用,研究成果丰富且多样。它是一种通用的预测范式,让预训练模型可以处理任意时序预测任务。在零样本预测中,Moirai的性能媲美甚至超越了SOTA。不仅仅是Moirai,谷歌的TimesFM、亚马逊的Chronos等都达成了革命性突破。对于时间序列领域想发论文的同学来说,学习这些优秀成果尤为必要。作为学术研究的热门方向,时间序列不仅可以。
2025-04-15 19:44:01
177
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人