企业数据、应用及技术架构设计方法聚焦三大核心架构:数据架构遵循数据按对象管理、全局视角定义、分类管理、实体数字化、服务化共享五大原则,通过资产目录、数据模型、数据分布设计实现数据一致与高效利用;应用架构以分层解耦、体验驱动、服务化实现为原则,通过应用域(AD)、应用组(AG)、应用模块(APP/ABB)分层设计,构建高内聚低耦合的功能体系;技术架构围绕技术框架、组件、服务、平台及部署设计,支持业务云化与敏捷开发,三者共同支撑企业数字化转型,提升数据资产价值与业务运营效率
一、数据架构设计方法
核心目标:通过数据整合与标准化,实现企业数据一致、准确、高效使用。
-
设计原则(5 项核心原则)
原则编号 原则名称 核心含义 IP1 数据按对象管理,明确数据 Owner 业务 Owner 即数据 Owner,负责数据质量与维护,指定数据管家 IP2 全局视角定义数据架构 建立组织级数据标准,确保唯一准确的数据定义,支撑跨域共享 IP3 遵从数据分类管理框架 按基础数据、主数据、事务数据等分类,制定差异化管理策略 IP4 概念实体结构化、数字化 将业务对象(人 / 财 / 物)转化为结构化数据模型,提升处理效率 IP5 数据服务化,同源共享 定义单一数据源,通过 API 服务化共享,保障跨系统数据一致 -
核心内容
- 数据资产目录:分层管理数据(数据域→数据主题→概念实体→逻辑实体→属性),如供应链域包含采购管理、供应商管理等主题。
- 数据模型:
- 概念模型:描述业务对象关联关系(如客户 - 合同 - 订单),不涉及技术实现。
- 逻辑模型:基于三范式细化概念实体,定义主键、外键及属性(如客户表含主键 ID、姓名、联系方式)。
- 数据分布:通过数据流图(系统间数据流转)和数据源图(数据源头分布),定位数据 “来龙去脉”,解决多源头或无源头问题。
-
设计步骤
- 资产目录设计:划分数据域(如供应链域、战略规划域),识别概念实体(如客户、合同)。
- 概念模型设计:建立实体关联关系(如客户与合同为 1:N 关系)。
- 逻辑模型设计:细化实体属性,确保符合三范式(如消除数据冗余)。
- 数据分布设计:绘制数据流图(如 ERP 系统向财务系统传递订单数据)和数据源图(如客户数据源头为 CRM 系统)。
二、应用架构设计方法
核心目标:构建分层解耦、服务化的应用体系,支撑业务流程与用户体验。
-
设计原则
- 分层解耦:前台面向用户(轻量级交互)、中台面向服务(业务能力沉淀)、后台面向数据(同源一致)。
- 体验驱动:统一用户入口(如移动端 / PC 端统一身份认证),优化内外部用户操作效率。
- 服务化实现:通过 API 开放功能(如供应商管理模块提供资质查询接口),统一服务管控与 SLA 承诺。
-
架构元素(分层结构)
plaintext
应用域(AD,如供应链域)→应用组(AG,如采购管理组)→一级应用模块(APP,如招标管理)→二级应用模块(ABB,如资格预审)→功能项/子项(如资格预审文件编制)
-
设计步骤
- AD/AG/APP 划分:按业务域(如资产管理、供应链管理)划分应用域,细化为采购管理、供应商管理等模块。
- 功能项梳理:识别业务流程对应功能(如采购流程包含需求计划、招标方案编制)。
- 服务设计:提取通用功能为共享服务(如供应商信息查询服务供采购、合同模块调用)。
- 系统集成:梳理现有系统与新架构的匹配关系,设计跨系统集成接口(如 ERP 与 CRM 系统数据同步)。
三、技术架构设计方法
核心目标:构建技术支撑体系,实现业务敏捷开发、云化部署与安全保障。
-
核心内容
- 技术框架:采用 “三横两纵” 架构(基础设施层、数字平台层、公共服务层;安全与运维纵贯),集成 AI、大数据、区块链等创新技术。
- 技术组件:
- 基础支撑:容器服务(Kubernetes)、中间件(ActiveMQ)、数据库(国产分布式数据库)。
- 安全保障:数据加密、访问控制、灾备服务(如异地多活部署)。
- 部署架构:
- 遵循6R 方法论(重构、迁移、保留、替换、停用、重建),支持公有云、私有云、混合云部署。
- 资源池设计:计算资源池、存储资源池、容器资源池,实现弹性扩展。
-
设计步骤
- 技术框架设计:参考业界最佳实践(如电网行业架构),定义技术原则(如全面云化、服务化)。
- 组件与服务设计:整合现有技术组件(如 Redis 缓存、RabbitMQ 消息队列),设计通用技术服务(如统一认证服务)。
- 部署设计:规划数据中心布局(集团 / 区域数据中心),制定容灾策略(同城灾备、异地备份)。
关键问题
-
数据架构如何确保跨系统数据一致?
- 答案:通过IP5 数据服务化原则,定义单一数据源(如客户主数据仅在 CRM 系统维护),其他系统通过 API 服务调用,避免多源头写入;结合数据分布设计,绘制数据流图明确数据流转路径,确保更新操作仅在数据源系统执行,实现跨系统同源共享。
-
应用架构中 “分层解耦” 如何落地?
- 答案:分为前台、中台、后台三层:
- 前台聚焦用户交互(如移动端 APP),仅消费服务不产生数据;
- 中台沉淀通用业务能力(如用户中心、积分中心),通过 API 对外提供服务;
- 后台管理核心数据资产(如主数据管理、数据仓库),确保数据同源一致。
层间通过标准化服务接口交互(如 REST/SOAP),降低耦合度,支持前台快速迭代与后台稳定运行。
- 答案:分为前台、中台、后台三层:
-
技术架构如何支撑业务快速创新?
- 答案:通过云化部署与服务化架构实现:
- 采用容器化技术(Docker/Kubernetes)实现微服务快速部署,支持弹性扩展;
- 建立技术服务目录,将通用功能(如电子签名、消息推送)封装为可复用服务,业务创新时直接调用,减少重复开发;
- 结合 DevOps 工具链(Jenkins 持续集成),实现敏捷开发与快速迭代,缩短新功能上线周期。
- 答案:通过云化部署与服务化架构实现: