有同学问我常见机器学习算法的应用场景,比如线性回归、逻辑回归、K 近邻算法等,还想知道机器学习怎么入门。今天咱一次讲清楚,奉上详细学习大纲。
首先看线性回归,它用于预测连续值。在房价预测中,根据房屋面积、房龄、周边配套等特征,构建线性回归模型,预测房屋价格。在股票价格预测方面,通过历史价格、成交量等因素,尝试预测未来股价走势,虽然股票市场复杂,但线性回归能提供一定参考。
可以用 Python 的 Scikit - learn 库实现线性回归预测房价的代码,解释代码中特征选取、模型训练和预测的过程。
其次;逻辑回归虽名字有回归,实际用于分类问题。在疾病诊断分类上,依据患者的症状、检查指标,判断患者是否患病。在营销响应预测中,根据客户的属性、行为数据,预测客户是否会对营销活动做出响应,帮助企业精准营销
然后:K 近邻算法前面提过,在电影推荐里,根据用户对电影的评分、观看历史等特征,找到与目标用户相似的 K 个用户,把这 K 个用户喜欢的电影推荐给目标用户。在商品分类中,根据商品的属性特征,找到 K 个最近邻商品,确定新商品的类别。
接下来讲讲机器学习入门学习大纲。首先是数学基础,掌握线性代数里的矩阵运算、向量空间,概率论中的概率分布、贝叶斯定理,数理统计的假设检验等,这是理解算法的根基。
然后学习基础算法,像刚才讲的线性回归、逻辑回归,理解其原理和推导过程。还有决策树、随机森林,掌握树结构构建和分类回归方法,以及朴素贝叶斯算法,熟悉贝叶斯定理和特征条件独立假设的运用。
实践操作必不可少,选择一个深度学习框架,比如 PyTorch 或 TensorFlow。通过实际代码实现各种算法,完成一些小项目,像简单的图像分类、数据预测等,加深对算法的理解。
积极参加 Kaggle、天池等平台的机器学习竞赛,锻炼解决实际问题的能力。同时,自己动手做一些完整项目,如智能客服机器人的意图识别、基于数据分析的销售预测等,积累项目经验。
按照这个学习大纲来,相信大家能很快的上手入门了