打卡第38天

作业:了解下cifar数据集,尝试获取其中一张图片

CIFAR 数据集简介

  • 来源:由加拿大计算机科学家 Alex Krizhevsky 等创建,用于图像分类研究。
  • 构成:包含 10 类(CIFAR-10)或 100 类(CIFAR-100)的彩色图像,共 6 万张(5 万训练 + 1 万测试),尺寸为 32×32 像素。
  • 特点:图像小、类别多,常用于验证机器学习模型的泛化能力。

获取图片的方法(以 Python 为例)

步骤 1:安装库
pip install torch torchvision  # PyTorch框架(含数据集接口)  
步骤 2:加载并查看图片
import torchvision  
from torchvision import datasets, transforms  
import matplotlib.pyplot as plt  

# 加载CIFAR-10训练集(可指定root参数存放路径)  
transform = transforms.Compose([transforms.ToTensor()])  # 转换为Tensor格式  
dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)  

# 随机获取一张图片(如索引为0的图片)  
img, label = dataset[0]  
print("标签:", dataset.classes[label])  # 输出类别名称  

# 显示图片  
plt.imshow(img.permute(1, 2, 0))  # 转换通道顺序  
plt.axis('off')  
plt.show()  
说明:
  • download=True 会自动下载数据集(首次运行需联网)。
  • 若需 CIFAR-100,将代码中CIFAR10改为CIFAR100,并注意类别标签差异。

如需进一步操作(如数据增强、模型训练),可基于 PyTorch 扩展代码。

@浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值