谷歌最新研究:大模型为何「学得会」却「用不好」?

前言

图片

你是否遇到过这样的情况:GPT、Claude等大模型在对话时很聪明,但经过微调后却变得「变笨」了?

这不是你的错觉,而是AI学习的一个有趣现象。最近,谷歌研究团队发表了一篇重磅论文,揭示了大模型两种学习方式之间的巨大差异。

现在一起来探索这个AI世界中的奇妙现象:为什么有时候「上下文学习」比「微调学习」更灵活?

图片

1、大模型的两种学习方式,哪个更强?

大模型主要通过两种方式学习新知识:

(1)上下文学习(In-context Learning):在对话中给模型几个例子,它能立刻举一反三

(2)微调学习(Fine-tuning):通过大量训练数据调整模型参数,使其适应新任务

直觉上,我们会认为微调应该效果更好,毕竟它直接修改了模型的「大脑」。但谷歌的研究发现,在某些情况下,上下文学习的泛化能力竟然比微调更强

"读到此处,你可能已经意识到:AI大模型的迭代速度远超想象,仅凭碎片化知识永远追不上技术浪潮。在这里分享这份完整版的大模型 AI 学习资料,已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证!免费领取【保证100%免费】在这里插入图片描述

2、「微调陷阱」:AI为何学得会却用不好?

谷歌研究人员发现了一个有趣的现象:当你教大模型"B是A的母亲"这个事实后,模型能回答"谁是B的母亲?“,但却无法回答"谁是A的儿子?”

这就是著名的「反转诅咒」(Reversal Curse)问题。尽管两个问题本质上是同一信息的不同表达方式,但微调后的模型却无法完成这种简单的逻辑转换。

研究通过精心设计的实验证明:微调学习在以下几种情况下表现不佳:

(1)关系反转:如"狗是哺乳动物" → “哺乳动物包括狗”

(2)三段论推理:如"狗是哺乳动物,哺乳动物是温血动物" → “狗是温血动物”

(3)知识组合:需要将多个事实串联起来得出新结论

而同样的任务,当所有训练数据放在对话上下文中时,模型却能轻松完成!

3、突破瓶颈:如何让微调也能「灵活思考」?

既然上下文学习和微调各有优势,能否结合两者优点?

谷歌研究人员提出了一个巧妙的解决方案:用上下文推理来增强微调数据

具体做法是:

(1)局部增强:对每条训练数据进行改写和反转,增加表达多样性

(2)全局增强:让模型基于整个训练集做推理,生成新的逻辑关系

(3)句子分割:将多句文档拆分为独立的训练样本,打破固有关联

这种方法在实验中:增强后的微调模型不仅克服了「反转诅咒」,在某些测试中甚至超过了上下文学习!

在这里插入图片描述

在这里插入图片描述

4、结语

这项研究不仅解释了大模型学习的奇怪现象,更为AI应用提供了实用指导:

(1)对AI开发者:微调模型前,先用上下文推理增强训练数据,能显著提升泛化能力

(2)对AI研究:揭示了不同学习方式的归纳偏好差异,为理解大模型内部机制提供线索

(3)对认知科学:呼应了「思考学习」理论,即通过计算可以提高信息的可访问性

更广泛地看,这项研究也启示我们:AI的学习过程与人类学习有着惊人的相似之处。人类学习新知识时,也会通过类比、推理和重新组织等方式,使知识变得更加灵活可用。

当我们使用ChatGPT等大模型时,总会惊叹于它们在对话中展现的灵活推理能力。但当我们尝试通过微调让模型掌握特定领域知识时,却常常发现效果不尽如人意。

谷歌这项研究揭示了其中的根本原因:微调和上下文学习在神经网络中激活了不同的信息处理路径

未来,随着「思考增强训练」等技术的发展,我们有望开发出兼具上下文学习灵活性和微调效率的新一代AI系统。这将极大推动AI在医疗诊断、法律咨询、教育辅导等需要灵活推理的领域的应用。

看到这里,你已经清晰认知到:
AI大模型正在重构全球科技产业格局
掌握核心技术者将享受的行业高薪资基准
碎片化学习正在吞噬90%开发者的竞争力

但问题来了——如何将这份认知转化为实实在在的职场资本?

🔥 你需要的不是更多资料,而是经过验证的「加速器」

这份由十年大厂专家淬炼的**【AI大模型全栈突围工具包】**,正是破解以下困局的密钥

🌟什么是AI大模型


AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。

这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理*、图像识别、*语音识别等。

图片

🛠️ 为什么要学AI大模型


目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

🌰大模型岗位需求


大模型时代,企业对人才的需求变了,AI相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

图片

💡掌握大模型技术你还能拥有更多可能性:


• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

🚀如何学习AI 大模型


由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的课程资料免费分享,需要的同学扫码领取!

在这里插入图片描述

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我帮你准备了详细的学习成长路线图&学习规划。大家跟着这个大的方向学习准没问题。如果你真心想要学AI大型模型,请认真看完这一篇干货!

图片

👉2.AI大模型教学视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩**(文末免费领取)**

图片

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(文末免费领取)

图片

👉4.LLM大模型开源教程👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末免费领取)

图片

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。 (文末免费领取)

图片

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(文末免费领取)

图片

🏅学会后的收获:


  • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
  • 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
  • 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
  • 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的大模型 AI 学习资料已经整理好,朋友们如果需要可以微信扫描下方我的二维码免费领取

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值