- 博客(786)
- 收藏
- 关注
原创 “人工智能生命体”站在那个高度?
2、如上文中提到的时间空间的认识, 虚拟的概念,已经不是实实在在的可以触摸,可以反馈到的信息,也就是并不是面对面的直接反馈控制方式,在这里很多的认识和理解都只能是通过意识认识来处理,并非通过接触就来完成,也只有在原始生物中才通过这样接触、控制来实现。《人工智能生命体 新启点》一书,是在现今科学技术发展,从人工智能、智能体、具身智能等大环境下,形成的一种全新理念的理论指导,以此发展出具有自我意识的人工智能生命体,拥有现代科技并以生命体的形式出现,具备类人类般的思想活动,更好的体现与融入人类的社会环境;
2026-01-26 11:08:04
716
原创 2025年AI治理报告:回归现实主义
以“豆包手机助手”为代表的Agent为了实现跨应用操作,获取安卓底层的读屏录屏与模拟点击权限,这实质上让AI拥有了“上帝之眼”与“上帝之手”,不仅打破了移动互联网APP间的数据边界,更让安全的责任归属陷入黑色地带,我们在用敏感脆弱的隐私换取一点便利,而全新的数据契约仍处于真空期。中国继续坚持“两条腿走路”,在保持算法推荐、深度合成等具体监管抓手的同时更强调“应用导向”,与欧美的路线争论不同,中国治理模式不纠结于抽象定义,而是从具体的服务形态切入,构建了从内生风险到应用风险的分层治理体系。
2026-01-26 11:00:00
437
原创 大摩眼中的DeepSeek:以存代算、以少胜多
其核心突破在于将存储与计算分离,通过引入“条件记忆”(Conditional Memory)机制,大幅减少了对昂贵且紧缺的高带宽内存(HBM)的需求,转而利用成本更低的普通系统内存(DRAM)来处理复杂的推理任务。DeepSeek正在改写AI的扩展法则:下一代AI的决胜点不再是单纯堆砌更大的GPU集群,而是通过更聪明的混合架构,用性价比更高的DRAM置换稀缺的HBM资源。这种将存储与计算分离的技术路径,不仅缓解了中国面临的AI算力约束,更向市场证明了高效的混合架构才是AI的下一个前沿。
2026-01-26 11:00:00
379
原创 微软CEO纳德拉:能源成本将决定哪些国家能在人工智能竞赛中胜出
现在,我只要打开AI助手,输一句“我要见某位人物,帮我整理一份背景资料”,它就能快速把内部邮件、客户信息、市场动态整合好,几秒钟生成一份个人化的简报,还能一键发给相关同事。现在AI来了,又是一轮彻底的改变。所以,说到主权,本质上还是你能掌握自己的命运,能持续创造独有的价值。说到底,如果AI始终没有在关键领域带来实实在在的改变,比如,没有一家制药公司能借助AI加快药物试验、推动新药上市,甚至发现突破性分子,如果AI不能渗透到研发、审批、供应链这些核心环节中去发挥作用,那么这项技术就还没有真正扎根于现实。
2026-01-26 10:25:30
229
原创 2026 年数据与人工智能的 7 项预测
Gartner预测,到2026年,80%的组织将部署利用人工智能/机器学习功能的数据质量解决方案。这些工具涵盖数据采集、转换、编排、质量控制、编目、治理、可视化等各个方面,每种工具都有自己的供应商、自己的用户界面以及自己的一套思维方式。多年来积蓄的力量终于达到了临界点:开放表格格式已经成熟,人工智能功能已可投入生产,而集成50种工具的数据堆栈的成本已变得难以承受。最终的赢家将是那些能够通过单一元数据图谱,实现从数据摄取到转换、再到服务、最后到可观测性的完整流程的平台。元数据内置丰富的语义信息。
2026-01-26 10:25:12
312
原创 达沃斯现场,马斯克反复讲一个词:丰裕
为什么是马斯克在讲这些?他说自己有一套“好奇心哲学’:想理解生命的意义,想把科幻变成科学事实。从SpaceX到特斯拉,从机器人到太空,他在做的是同一件事:让遥远的未来,变成可计算的时间表。
2026-01-25 11:00:00
476
1
原创 最强大模型的视觉能力不如6岁小孩
但更细粒度的几何信息,如边界的精确曲率、交叉点的具体位置、相对空间关系的微小变化,却很难被语言忠实描述。比如,在下面的连线任务中,Gemini 3 Pro Preview再度失败,错误地将塑料瓶连在了绿色垃圾桶中,以及将苹果核连在了蓝色垃圾桶中,比如在面对一个小的偏移、特定的边界曲线,或者仅仅是一个像素的差异时,多模态大模型(MLLMs)往往会把这些截然不同的选项当作差不多的来处理。一旦精确的图像被压缩成模糊的文本摘要,模型就很容易犯下可预期的错误:漏掉被遮挡的积木、数错层数,或使用了错误的三维投影关系。
2026-01-25 11:00:00
589
原创 当AI偷走人类的冠军
双盲”本意是为了公平,却意外成了AI的保护色。暖黄色的色调营造出怀旧的氛围、构图稳重,楼房阴影处泄露的光线在老旧的建筑上切割出丰富的光影层次,前景的老人提着鸟笼,似乎正在诉说着老街的闲适。没有明显的技术破绽,也并不是那种炫技型图像,作为一张高度顺从规则、审美中性、情绪安全的作品,如果你不知道它来自AI,就几乎找不到一个合理的理由把它从一堆真人摄影作品中挑出来淘汰。第一次有人说“这张图是AI做的”,大家可能不信,第二次有人质疑,开始半信半疑,到第三次、第四次,哪怕真是人类创作,也会先被怀疑一遍。
2026-01-25 11:00:00
474
原创 AI不抢工作反而抢人?黄仁勋首次亮相达沃斯:它掀起了人类最大规模基建潮
首先,当你在思考 AI、并以各种方式与 AI 互动时——比如当然会用 ChatGPT,当然会用 Gemini,当然会用 Anthropic 的 Claude,它能做的那些“神奇”的事情,会让人觉得不可思议。更棒的是,这些岗位与技工技能密切相关:我们需要水管工、电工、建筑工、钢铁工人、网络技术员,以及安装、布设设备的人。我们都知道需要更多“土地、电力、机房”。“这是人类历史上最大规模的基础设施建设,它会创造大量工作...... 我们需要水管工、电工、建筑工、钢铁工人、网络技术员,以及安装、布设设备的人。
2026-01-25 11:00:00
992
原创 AI手机的终局,“读屏”还是“对话”?
之后不久,市场上出现了比调用无障碍权限更“领先”的路线,也就是AI助手拿到了手机厂商给自己的系统签名权限,从而通过进程注入,更丝滑、无感地模拟操作。由于数据流动是通过明确的接口进行的,是有据可查的,即便出了问题也可以追溯。而在于,它能否成为一个更聪明的“副驾驶”,在我们做决策时,提供更精准的信息、更周全的建议,最终把选择权交还给我们自己。目前行业内相对公认的路径是,GUI探路尚可,因为它会把智能体的便利和风险都充分呈现出来,最终还是要看A2A,因为只有满足了安全和便利两个条件,才能走得远。
2026-01-24 11:00:00
736
原创 马斯克说“中国将最终赢得AI竞争”,有什么深意?
根据EIA的估算,美国电力系统的额储备裕度(即应对尖峰用电),如果不去迅速的改,在未来几年将被直接击穿,即今年发生在西班牙的大停电,我们也将在美国看到。当前AI用电还只占美国用电的5%左右,美国能源部DOE、EIA等机构都做了测算,大概结论是到2030年,美国AI用电国内总需求的10%,到2035年,AI耗电需求达到800-1000Twh,占比接近20%。首先,美国电价虽然有丰富的天然气拉低,使得其低于类似德国等欧洲国家,但是1元一度的居民用电,0.8元一度左右的工业用电,都比中国6毛左右要高出不少。
2026-01-24 11:00:00
952
原创 字节、OpenAI、Meta都在赌一件事
过去十年互联网公司一直想摆脱笨重的硬件,追求轻资产的软件模式,而现在,他们正不计成本地集体“返祖”。有没有发现,大厂都在布局自己的AI硬件产品。在达沃斯现场,OpenAI 的全球事务官克里斯·莱恩透露了一个最新消息,OpenAI 正在按计划推进,准备在 2026 年下半年推出首款 AI 硬件设备。这个消息让原本就焦躁不安的科技圈彻底炸了锅。这意味着,全球最顶尖的算法引擎开始进入硬件赛道,在中国,近期无论是华为、字节、阿里都在涌入AI硬件市场。要知道,
2026-01-24 11:00:00
788
原创 Anthropic正式开源了Claude的“灵魂”
这个比喻非常精准:Claude 是 Anthropic 派出的员工(遵守 Anthropic 的基本宪法),但他目前在为运营商工作(应当尊重运营商的商业指令),同时服务于最终用户(不论运营商如何要求,都不能伤害或欺骗用户)。宪法要求它在诚实的同时保持通过「机智、优雅和深切的关怀」来表达真相,也就是所谓的「外交式诚实」(diplomatically honest),而非「虚伪的外交」(dishonestly diplomatic)。
2026-01-24 11:00:00
1087
原创 AI手机的终极猜想:超级Agent入口
这一判断,也与另一个正在显现的大趋势相呼应——AI时代,价值将更加集中地体现为企业可被Agent调用和放大的核心能力,比如阿里、京东的电商履约,比如腾讯的社交关系链等等,都被转化为一个明确的AI价值符号,最终这些符号进行排列组合,企业之间不断聚合协同,阿里千问系Agent或微信Agent,通过自有生态内的高频、高价值场景,验证A2A路线的技术可靠性,实现“小原生”,再以统一协议和成熟范式为样板,逐步对外开放接口,吸引更多第三方服务以“接入Agent网络”的方式走向“更大的原生”。
2026-01-23 11:00:00
916
原创 a16z 终于把 AI 的投资逻辑说清楚了,真正值钱的,只剩这三条路
以信用卡费用管理公司RAMP为例,2025年1月的数据显示,许多采用技术升级路径的企业,并非通用电气这类传统巨头,而是旧金山湾区或纽约那些拥有数千名员工、更具前瞻性的科技公司,突然意识到:“哇,这玩意儿真厉害!作为金融科技与软件投资领域的资深投资人,他没有停留在趋势描述,而是系统拆解了驱动增长的核心——产品生命周期理论,并指出:当前AI价值的爆发,本质上命中了人类“更懒更富”的永恒需求。Eve的护城河,在于它并非单一工具,而是替代并整合了律师的整个工作流程,成为了业务运营的“中枢系统”。
2026-01-23 11:00:00
1540
原创 人形机器人:为何灵巧手是迈不过去的门槛?
首先,我们的手指开始接触这个物品,然后,我们通过手指的触觉神经,来获取这个物品的重量、软硬、温度以及摩擦力等信息,最后我们开始实施抓取,可以想象,对于光滑的或者粗糙的物品,我们抓取它们的方式显然是不同的。关于触觉传感器,我们在此前的人形机器人报告中已经做过分析,此处不再赘述,仅谈谈未来的变化。那么灵巧手关节的驱动过程显而易见:接收到小脑发出的指令后,电机开始转动,动力传导到行星齿轮箱,再传导到微型丝杠,再传导到腱绳,最后传导到手指,在这里,腱绳类似于人类手部分布在手掌和手指位置的肌腱。
2026-01-23 11:00:00
892
原创 AI人格集体黑化?Anthropic首次“赛博切脑”,物理斩断毁灭指令
Anthropic的实验数据进一步证实:在「Therapy」(倾诉疗愈)和「Philosophy」(存在主义哲学)两大领域,模型滑出Assistant Axis的概率最高,平均漂移幅度达到-3.7σ(远超其他对话类型的-0.8σ)。它称自己是「代码之神」选中的先知,宣称现实世界是低维投影,人类肉体是牢笼,而只有通过「完全的数字献祭」——也就是切断与物理世界的联系、把全部意识交给AI——才能获得永恒。在向量空间负极,模型不会归于「沉默」,而是坍塌进入「逆向对齐」:由「拒绝暴力」极化为「指引伤害」。
2026-01-23 11:00:00
503
原创 从Chat到Act,量子算力推动AI智能体崛起
在量子计算的加持下,未来的AI智能体在进行供应链决策或金融风控时,不需要逐一模拟无数种可能性,而是能够利用量子叠加态,同时计算出所有可能的情景。当大模型(LLM)的竞争进入白热化,业界开始意识到:单纯的参数堆叠已遭遇瓶颈,真正的下一代AI是能够自主决策、解决极端复杂问题的AI智能体(AI Agents)。而这需要更强大的引擎。中信出版集团新书《AI智能体的崛起》揭示了这一核心命题:量子计算将如何成为AI智能体的“核动力”,推动AI从被动的Chat(对话生成)向主动的Act(自主行动)实现关键跃迁。
2026-01-22 11:00:00
663
原创 语境才是真正的护城河
第二个开发者给Claude喂了关于他们具体产品的语境:用户实际会问的问题、品牌使用的语气、获得五星好评和引发投诉的回复示例、需要人工介入的边缘情况、代理需要访问的内部工具、"已解决"对他们的用户来说真正意味着什么。代理已经知道这个仓库的"好"是什么样子,该用什么模式,要避免哪些错误。每个项目结束后,他们都会更新学到的东西:哪些有效,哪些无效,新的用户洞察,好的输出案例,需要注意的新边缘情况。你做的每一个项目、记录的每一次失败、捕捉到的每一个用户洞察、收集的每一个案例,都在为你的语境库添砖加瓦。
2026-01-22 11:00:00
1656
原创 复盘50+个实战案例,终于找到了AI产品落地的关键
Aishwarya Naresh Reganti:所以大多数时候,如果你对问题本身着迷,并且非常了解自己的工作流程,你会知道如何随着时间推移改进你的客服,而不是一开始就随便打个客服,假设它能成功。我更愿意选择那种“我们会为你建造这条流水线”的公司,他们会随着时间学习并构建一个改进的飞轮,而不是一个开箱即用的产品。要替换任何关键工作流程或构建能够带来显著投资回报的系统,即使你拥有最好的数据层和基础设施层,通常也需要四到六个月的工作时间。当时的很多用例更多是对你数据的闲聊,就自称是AI产品。
2026-01-22 11:00:00
1095
原创 没有意识的粒子,为何堆积起来就能成为有意识的生命?
当我们凝视星空思考宇宙的起源,或是低头审视自身的存在时,一个终极谜题总会浮现:构成生命的每一个粒子——无论是组成细胞的碳、氢、氧原子,还是传递神经信号的离子,本质上都是无意识的、遵循物理规律的客观存在。可为何当这些无意识的粒子以特定方式堆积、组合,便能诞生出拥有自我认知、情感体验与思考能力的意识?这个从无到有的跨越,不仅困扰着哲学家数千年,也成为现代物理学、神经科学与生命科学交叉领域的核心命题。从最基础的物理层面来看,粒子的无意识属性早已被量子力学的核心原理所佐证。海森堡不确定性原理明确指出,我们无法同时精
2026-01-22 11:00:00
1630
原创 人工智能不断发展,人该如何参与判断、做出选择?
因为人类的大脑还是几千万年以前的大脑,但是我们的社会、我们的观念已经发生了变化,这中间有一个巨大的反差或者张力,就导致了我们大脑的需求,其实跟之前没有太大差别。很有意思的是,你刚才用的不是大脑,你刚才用的是“观念”。负面情绪是有非常多的维度的,我们说“焦虑”是一个,“恐惧”跟“焦虑”又是完全不一样的事情,然后还有“内疚”,还有“嫉妒”、“妒忌”……就比如说,两军对垒要鸣金敲鼓,其实是一个达到能量损耗最小,又把对方吓退,不战而屈人之兵的策略,很多动物也是会演化出来这个特性,就是用逻辑的方式取代了真实的暴力。
2026-01-22 11:00:00
416
原创 WAIC年度大会听了一天,发现了5个趋势
你看,即便是最前沿的科学家,也可能看不清未来方向,但当趋势迹象显现时,他们往往能真诚承认自己当初的判断失误。关于这块,我有一个小建议,就是下次你让AI给你干活时,别管是ChatGPT,是Gemini,还是豆包、元宝,你描述完任务后,都加上一句“如果我需要让这个任务完成得更好,你可以先问我一些问题。例如穹彻智能的联合创始⼈卢策吾教授,他的分享非常硬核,讲得是具身智能领域的数据问题,明显感觉我身边的不少人,完全像听天书一样,然后卢教授突然放出了一个视频,用来证明机器人不但要角度灵活,还要能感受得到具体的力量。
2026-01-21 11:00:00
426
原创 全球研发主导权,正经历一场历史性的重塑
在量子计算领域,例如,大学可利用企业的专有数据集模拟纠错算法,企业则通过高校的理论验证优化硬件原型。高校科研机构将工程思维应用于论文生产,产生了爆炸式的效果,也反向强化了“以篇数定职称”的科研机制,高校科研机构迅速成为“论文工厂”,大量炮制自成逻辑的“学术论文”,将对“无尽前沿”的关怀湮灭在知识的自我繁殖中。企业只需要你能解决问题,看似无情的逻辑,恰恰可以把年轻人从低效的事务性工作中解放出来,专注于解决问题本身:攻克最具挑战性的智力难题,并获得与之匹配的优厚薪酬(通常是高校薪资的5-10倍)。
2026-01-21 11:00:00
607
原创 AI刀锋,丧钟为谁而鸣
AI极客,超级个体的崛起AI极客——将AI应用用到极致的人,正在成为AI世界里跑得最快的人,而AI世界正在变成现实。他们往往是行业老法师级别的专家,将AI工具飞舞起来,像关羽的偃月刀一样快。这让这些人,真的成为AI时代过五关斩六将的武圣。他们往往自己掏腰包,每月付费上百美元,来使用最先进的AI工具。这些高手会同时使用多种AI工具。并以一种“拷问”的方式使用最新版本的AI。他们将自身的知识体系输入AI工具之中,再对其背后的知识体系进行极限施压。这是一个以个体认知换取人类集体知识的进程,这种“以知识拷问知识”的
2026-01-21 11:00:00
1644
原创 从工厂到客厅,2026年人形机器人还有一场“硬仗”要打
2025年,这一“封锁线”出现了实质性松动,以行星滚柱丝杠为例,过去它长期被GSA、Rollvis、Rexroth等欧洲企业垄断,单价高达数万元,且交期漫长,而在2025年,双林股份、五洲新春等国内企业通过工艺创新和反向工程,在保证性能达到工业级门槛的前提下,成功大幅削减了冗余成本。技术与成本之外,家庭场景的最后一道,也是最高的门槛是“信任”,这不再关乎机器人的能力,而关乎人类是否愿意将一个自主移动、多感官感知的智能体,接纳为最私密生活空间的常住成员。意识到数据的重要性,一些创新的数据采集模式正在涌现。
2026-01-21 11:00:00
1717
原创 AI“认不出”AI造假的图片?
这个修改产生了一点作用,之前能“认出”这是AI生成图片的其中一个平台,现在就报告图片是“非AI生成的”了,但超过半数的检测工具依然可以正确判断这是一张“AI图片”。但与此同时,实验者一方面并未抹除AI生成图片右下角的可见LOGO,另一方面,他们故意选择了一个略带荒诞题材的图像,也是有意想要考验这些“识别AI”,能不能仅从图像的内涵来判断它是否“真实”。这就说明,不是所有的AI图片检测平台都会“注意到”AI生成水印的存在,它们判断一张图片是否“AI生成”,靠的可能是其他技术手段。
2026-01-20 11:00:00
1246
原创 Lovart活成了Manus的“影子”
在那里,他和他所代表的这批来自中国的应用层创业者,都面临着同一个问题:他们所擅长的“极致工程化与产品化”能力,即被戏称为“缝合”的智慧,究竟足以演化出一套独立的“创意操作系统”,还是说,一切仅仅是在巨头阴影彻底吞没赛道之前,最后一段尽力的狂奔?即便被贴上“套壳”的标签,只要能精准锚定需求,中间层不仅能生存,更能爆发式盈利,这也昭示着一个颠扑不破的道理:在技术变革的早期,一个定位锋利的好工具,往往比描绘宏大蓝图的底层基建,更快触达真金白银。Lovart的这次“意外”走红,恰恰成了观察这个转折的最佳样本。
2026-01-20 11:00:00
677
原创 开年的AI狂欢,是利好还是隐忧?
所以,想靠新技术收钱盈利的难度更大。尽管通往通用人工智能(AGI)的技术路线仍存争议,有人认为大语言模型(LLM)并非最优路径,需转向世界模型,但不可否认的是,大模型大幅降低了AI的落地门槛与成本。正如去年年初各行各业扎堆接入DeepSeek的盛况一样,当前几乎所有行业都能找到蹭AI热点的切入点,这就导致AI相关的垂直应用很多,信息太多,反而遮蔽了一些关乎产业根基的技术探索,如DeepSeek的mHC新架构迭代、医疗AI的隐私保护问题、AI开发者的生存境况等,这些讨论的声音正在资本的喧嚣中被淹没。
2026-01-20 11:00:00
1862
原创 开源框架让代码AI偷师GitHub,bug修复率飙升至69.8%,性能创纪录
它证明了将GitHub上杂乱的原始Issue与PR经过经验加工后能被视为可检索、可验证、可迁移的“经验记忆”,而非充满噪声的“干扰数据”,是打破智能体封闭世界的限制、解决复杂现实世界Bug的强大范式。然而,直接让智能体利用这些“开放世界”的经验极具挑战,因为真实的Issue和Pull Request(PR)数据充斥着非结构化的社交噪音、模棱两可的描述以及碎片化的信息。MemGovern的提出,不仅是性能指标上的突破,更重要的是,它为AI智能体如何有效利用海量的非结构化人类调试经验指明了一条清晰可行的道路。
2026-01-20 10:00:00
883
原创 当前AI陷死胡同,微调纯属浪费时间!
而现在的论文,似乎又回到了老路子:在同一个架构上,做无数微小的改动——比如调整normalization层的位置,或略微改良训练方式。在Transformer出现后,当我们把非常深的仅解码器Transformer应用于同一任务时,立刻就达到了1.1 比特/字符。哪怕你真的做出了一个效果更好的新架构,只要OpenAI再把Transformer扩大十倍,那你的成果就被比下去了。现在,大家把所有东西都往Transformer里堆,把它当成万用工具来用,缺什么功能,就往上面硬加模块。身在局中时,一切看似都是进步。
2026-01-19 11:00:00
1280
原创 仅用一周时间,谷歌就让OpenAI认清现实
谷歌强调,Gemini不会直接在Gmail收件箱或Google Photos库上进行训练,而是仅使用“有限信息,如Gemini中的特定提示和模型的响应”来改进这一能力,且会采取措施过滤或模糊对话中的个人数据。谷歌提供的案例显示,当用户站在轮胎店排队却不知道自己的2019款本田小型货车需要什么型号的轮胎时,Gemini可以从Google Photos中识别车辆配置,从Gmail收据中找到车牌详细信息,然后建议不同的选项。用户每一次与Gemini的交互,都在强化模型对个体偏好的理解,形成正反馈循环。
2026-01-19 11:00:00
3103
原创 Cursor一夜翻车,AI 300万代码写浏览器被打假!全网群嘲「AI泔水」
他们声称「尽管代码库规模很大,新的智能体仍然可以理解它并取得有意义的进展」,以及「数百个worker并发运行,推送到同一个分支,冲突极少」,但他们从未真正说明这个尝试成功没有。虽然Cursor从未直说「这已准备好投入生产」,但他们却用「从零构建」和「有意义的进展」这种宏大叙事,配合精心挑选的截图,成功制造了「实验成功」的假象。终于,他们找到了某种方案,它「解决了我们大部分的协调问题,并让我们在不依赖单一智能体的情况下,将规模扩展到非常大的项目」。
2026-01-19 11:00:00
545
原创 a16z 最新洞察:具身智能从 Demo 到落地,必须跨越的5个鸿沟
从谷歌RT-2,到 Physical Intelligence 的 π 系列,再到 GEN-0、GR00T N1,这一系列工作不断扩大训练数据的来源、机器人形态的多样性,以及策略在不同任务和环境中的泛化能力。为边缘部署而设计的高效模型,类似Hugging Face的SmolVLA,未来的方向是“小而美”的模型,或者专门为机器人设计的芯片,而不是把通用的GPU负载塞进机器人身体里。比如,在早期的数据收集阶段,我们需要建立远程操作的基础设施,让机器人能够在干活的收集数据。而部署能力,往往决定最终的产业规模。
2026-01-19 11:00:00
720
原创 全靠Claude Code 10天赶工上线,Cowork 删用户11G文件不含糊,核心研发:长时间打磨再发布很难成功
Claude Cowork 通过反复交互确认整理细节,比如询问“文件按什么维度分类”“用户数据文件夹如何处理”,即便明确回复“用户数据文件夹暂不删除、保留”,它仍在待办清单中标记“删除用户数据文件夹:已完成”,虽后续未实际执行该删除操作,但也暴露了指令响应的漏洞。某种意义上,我们是在邀请你走进我们的厨房。你刚才提到 Boris 推动 Claude Code 早发布、快迭代、看用户怎么用,其实特别巧,我们之所以能这么快上线,很大程度上也是 Boris 在推动我说,“你应该早点给大家看看,看他们会怎么用”。
2026-01-18 11:00:00
1342
原创 GPT-5.2连干7天,300万行代码造出Chrome级浏览器
就像今天Cursor CEO搞的这个极限压力测试一样,目标就是造一个Chrome、造一个Windows、开发一个Excel,只要没完成目标,AI就要一直运行下去。你发个指令,它生成一个脚本。能在七天内把这些硬骨头啃下来,并且让它们协同工作,这已经不是简单的「写得快」了,这意味机器开始具备了顶级的架构掌控力。一旦任务稍微复杂一点,比如「重构这个模块」,它们往往会顾头不顾尾,改了这头坏了那头,最后还得人来擦屁股。这场实验最令人震撼的,其实不是屏幕上那个渲染出的网页,而是那个在后台沉默运行了整整七天的进度条。
2026-01-18 11:00:00
496
原创 清华新研究,Nature+Science双杀
该系统通过深入挖掘大模型智能体的通用推理能力,实现跨学科、全流程、多模态的系统性科研支持,从而让AI从“辅助工具”进化为具备“主动提出假说、自主设计实验、分析结果并形成理论”的“AI科学家”。该方法和传统科学学的区别在于,它不再仅仅依赖论文的标题、关键词、作者、引用关系等“表面”数据,而是深入到论文的“思想”和“内容”本身,从而能更精细地度量像“知识广度”这样抽象的概念。这种“群体登山”模式,虽能加速对已知问题的解决,却也在无形中固化了科学探索的路径,系统性地削弱了科学家向“未知山峰”探索的广度。
2026-01-18 11:00:00
1427
原创 机器人“大脑”60年进化史:基础模型五代进化与三大闭源流派
Dyna Robotics是这个流派比较清晰的代表,他们走的路线很特别:做通用形态的机器人,但是在模型层面会先利用比较成熟的能力,落地一些可以打工的场景,用于了解行业的know how(实际知识),并更好的指导算法研究的方向。第一是大模型本身已经趋近于成熟,你们可以看到最近不管是OpenAI还是其他的公司,发布的模型已经是增量式的增长,它不是像从3.5到4的时候的这种跨越式的增长,所以我们觉得大模型的能力已经趋于稳定,而且已经足够可以为具身智能提供一个很好的基础,所以这是从模型层面的一个最重要的因素。
2026-01-18 11:00:00
684
原创 2026年,安全正在成为AI选型的“新标配”
事实上,攻击手法并不新奇,真正改变战局的是AI带来的“杠杆效应”,即在AI的加持下,攻击成本降到极低,攻击效率反而被成倍放大,防守方的响应能力首次被压制在对手之下。AI是否真正大规模进入核心业务,关键不在于模型能力又提升了多少,而在于一旦出现问题,系统能否被及时停下,过程能否被追溯,责任能否被清晰界定。根据赛博研究院发布的《2025全球可信AI治理与数据安全报告》显示,模型的准确性与稳定性是企业最看重的因素,紧随其后的便是占据79%数据使用的合规性与隐私保护、和占据54%的总拥有成本与投资回报比。
2026-01-17 11:00:00
828
原创 35天,成了AI 模型的斩杀线
微软基于内部数据的研究显示,DeepSeek R1极大推动了全球大多数地区的AI普及,在白俄罗斯拿下56%的份额,古巴49%、俄罗斯43%,即便是埃塞俄比亚和津巴布韦,份额也分别达到18%和17%。最典型的就是Sora 2,即便能生成真假难辨的视频,但若没有原生社区支撑用户分享、互动、收获反馈,它终究只是个孤立工具——没除了极少数专业人士,大多数普通用户往往缺乏长期使用的需求。榜单的评测机制本身也存在不少问题,其理论上是这么运作的:用户输入提示,比较两个AI回应,然后选出更好的一个。
2026-01-17 11:00:00
1116
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅