AI原生应用中的自然语言生成:如何生成结构化的输出
标题选项
- 告别“随心所欲”:AI原生应用中结构化自然语言生成实战指南
- 从混乱到有序:手把手教你在AI应用中实现可靠的结构化输出
- AI生成内容“格式化”:用提示词、工具调用与验证构建结构化数据
- 大模型输出“驯服术”:掌握结构化自然语言生成,让AI按规则“说话”
- AI原生应用开发必备:结构化输出全攻略(从提示词到LangChain落地)
引言 (Introduction)
痛点引入 (Hook)
你是否曾经历过这样的场景:调用大语言模型(LLM)生成数据时,得到的回复时而像散文,时而像代码,偶尔夹杂着无法解析的格式错误?比如,你明明要求返回“用户信息列表”,模型却给你一段自然语言描述:“用户包括张三,年龄25岁,邮箱是…还有李四,他的年龄…”;或者返回的JSON缺了一个括号,导致后端解析直接报错。
在AI原生应用中,这种“自由发挥”的输出堪称“致命伤”。想象一下:
- 客服系统需要从LLM回复中提取用户投诉的“问题类型”“严重程度”,却因格式混乱无法自动分类;
- 数据分析工具调用LLM生成报表数据,因JSON格式错误导致可视化图表加载