递归算法入门:从斐波那契到汉诺塔的经典案例
关键词:递归算法、斐波那契数列、汉诺塔、经典案例、算法入门
摘要:本文旨在带领大家走进递归算法的奇妙世界。从有趣的故事引入递归概念,详细解释递归的核心原理,就像给大家讲述一个个精彩的冒险故事一样。通过斐波那契数列和汉诺塔这两个经典案例,用通俗易懂的语言和丰富的代码示例,深入剖析递归算法的具体实现和应用。还会探讨递归算法在实际场景中的运用、未来发展趋势与挑战等内容。希望读者通过阅读本文,能轻松掌握递归算法的精髓,开启算法学习的新征程。
背景介绍
目的和范围
在计算机编程的世界里,递归算法就像是一把神奇的钥匙,能帮助我们解决很多复杂的问题。本文的目的就是带大家走进递归算法的大门,从最经典的斐波那契数列和汉诺塔问题入手,让大家了解递归算法是什么,它是如何工作的,以及在实际中如何应用。我们会用简单易懂的语言和详细的代码示例,让大家轻松掌握递归算法的基本原理和使用方法。
预期读者
这篇文章适合刚刚接触编程,对算法感兴趣的初学者。就像你刚刚走进一个神秘的编程城堡,递归算法是城堡里的一个宝藏房间,我们会一步一步带你打开这个房间的门,让你发现里面的奥秘。即使你没有太多的编程经验,也不用担心,我们会像给小学生讲故事一样,把递归算法的知识讲得清清楚楚。
文档结构概述
接下来,我们会先解释递归算法的核心概念,就像给你介绍一个新朋友一样,让你了解它的性格和特点。然后通过斐波那契数列和汉诺塔这两个经典案例,详细讲解递归算法的具体实现和操作步骤。之后会探讨递归算法在实际中的应用场景,以及推荐一些学习递归算法的工具和资源。最后会总结我们学到的知识,提出一些思考题,让你进一步思考和应用所学的内容。
术语表
核心术语定义
- 递归算法:简单来说,递归算法就是一个函数自己调用自己的过程。就像你站在两面相对的镜子中间,你会在镜子里看到无数个自己,这就是一种递归的现象。在编程中,递归函数会不断地调用自身,直到满足某个条件才停止。
- 斐波那契数列:这是一个非常著名的数列,它的特点是从第三项开始,每一项都等于前两项之和。数列的前几项是:0、1、1、2、3、5、8、13……就像小朋友排队,后面的小朋友的编号是前面两个小朋友编号的和。
- 汉诺塔:这是一个经典的数学谜题,有三根柱子和一些大小不同的圆盘,要求把所有圆盘从一根柱子移动到另一根柱子,并且在移动过程中,大盘不能放在小盘上面。
相关概念解释
- 函数调用:就像你让小伙伴帮你做一件事情一样,在编程中,你可以让一个函数去执行特定的任务。当你调用一个函数时,程序会跳转到这个函数的代码处执行,执行完后再回到原来的地方继续执行。
- 终止条件:在递归算法中,终止条件非常重要。它就像你冒险的终点,当满足这个条件时,递归函数就不再调用自己,而是开始返回结果。如果没有终止条件,递归函数会一直调用自己,就像你在一个没有出口的迷宫里一直走,最终会导致程序崩溃。
缩略词列表
本文没有使用缩略词。
核心概念与联系
故事引入
从前,有一个勇敢的小探险家,他听说在一座神秘的大山里有一个隐藏的宝藏。小探险家来到山脚下,发现山中有很多条小路,每条小路又会分出更多的小路。小探险家决定沿着一条小路一直走下去,当他走到一个分叉口时,他会选择一条新的小路继续前进。他不断地重复这个过程,就像在一个迷宫里探索一样。但是,他知道如果一直这样走下去,可能会迷失方向,所以他给自己定了一个规则:当他走到一个死胡同时,就原路返回,然后再选择另一条小路。最终,小探险家通过不断地探索和返回,找到了隐藏的宝藏。
在这个故事中,小探险家不断地沿着小路前进,就像递归函数不断地调用自己一样。而当他走到死胡同时原路返回,就相当于递归函数遇到终止条件后开始返回结果。这就是递归的基本思想。
核心概念解释(像给小学生讲故事一样)
核心概念一:什么是递归算法?
递归算法就像一场神奇的接力赛。想象一下,你是一个小信使,要把一封信送到很远的地方。但是路途太遥远了,你一个人送不完。于是你把信交给了你的小伙伴,让他接着送一段路。你的小伙伴也觉得路太远,他又把信交给了他的小伙伴,就这样,信在小伙伴们之间不断传递。直到有一个小伙伴离目的地很近了,他就直接把信送到了目的地,然后再把结果沿着原来的路线传回来。在编程中,递归函数就像这些小信使,它会把一个大问题分解成一个个小问题,然后不断地调用自己去解决这些小问题,直到遇到一个很容易解决的小问题,然后再把结果返回回来。
核心概念二:什么是斐波那契数列?
斐波那契数列就像一群神奇的小兔子在繁殖。假设一开始有一对小兔子,一个月后它们长成了大兔子,从第二个月开始,每对大兔子每个月都会生出一对小兔子。那么每个月兔子的对数就构成了斐波那契数列。第一个月有 1 对小兔子,第二个月有 1 对大兔子,第三个月有 1 对大兔子和 1 对小兔子,一共 2 对兔子,第四个月有 2 对大兔子和 1 对小兔子,一共 3 对兔子……以此类推。斐波那契数列的规律就是从第三项开始,每一项都等于前两项之和。
核心概念三:什么是汉诺塔?
汉诺塔就像一个有趣的积木游戏。有三根柱子,就像三个好朋友站在那里。还有一些大小不同的圆盘,就像不同大小的积木。一开始,所有的圆盘都叠放在第一根柱子上,而且大盘子在下面,小盘子在上面。现在的任务是要把所有的圆盘从第一根柱子移动到第三根柱子上,但是有一个规则:在移动过程中,大盘子不能放在小盘子上面。这就像你在玩积木时,不能把大积木放在小积木上面一样。我们可以通过递归的方法来解决这个问题。
核心概念之间的关系(用小学生能理解的比喻)
概念一和概念二的关系:递归算法和斐波那契数列如何合作?
递归算法和斐波那契数列就像两个好朋友一起完成一个任务。斐波那契数列有一个很明显的规律,就是每一项都和前两项有关。我们可以用递归算法来利用这个规律。就像你要计算斐波那契数列的第 5 项,递归算法就会说:“我先不直接算第 5 项,我先去算第 3 项和第 4 项,因为第 5 项等于第 3 项加第 4 项。”然后递归算法又会去算第 3 项和第 4 项,它会不断地把问题分解成更小的问题,直到遇到第 1 项和第 2 项,因为这两项是已知的(第 1 项是 1,第 2 项是 1),然后再把结果一步一步返回回来,最终算出第 5 项的值。
概念二和概念三的关系:斐波那契数列和汉诺塔有什么联系?
虽然斐波那契数列和汉诺塔看起来是两个不同的东西,但它们都可以用递归算法来解决。它们就像两个不同的冒险任务,但都可以用同一种方法来完成。斐波那契数列是通过不断地计算前两项的和来得到后面的项,而汉诺塔是通过不断地把圆盘从一根柱子移动到另一根柱子,并且遵循一定的规则。在解决这两个问题时,我们都可以把大问题分解成小问题,然后利用递归的思想来解决。
概念一和概念三的关系:递归算法和汉诺塔如何合作?
递归算法和汉诺塔就像一个聪明的指挥官和一个复杂的战场。汉诺塔问题看起来很复杂,有很多圆盘要移动,而且还有规则限制。但是递归算法可以把这个复杂的问题分解成简单的小问题。比如,要把 3 个圆盘从第一根柱子移动到第三根柱子,递归算法会说:“我先把上面的 2 个圆盘移动到第二根柱子,然后把最大的圆盘移动到第三根柱子,最后再把第二根柱子上的 2 个圆盘移动到第三根柱子。”而对于移动 2 个圆盘的问题,递归算法又会继续分解,直到只剩下 1 个圆盘,这时就可以直接移动了。递归算法就像指挥官一样,指挥着圆盘在柱子之间移动,最终完成任务。
核心概念原理和架构的文本示意图(专业定义)
递归算法原理
递归算法的核心原理是将一个大问题分解成若干个相同类型的小问题,直到问题小到可以直接求解。递归函数通常包含两个部分:
- 终止条件:当满足这个条件时,函数不再调用自己,而是直接返回结果。
- 递归调用:函数在执行过程中调用自己,将问题分解成更小的子问题。
斐波那契数列原理
斐波那契数列的定义为: F ( 0 ) = 0 F(0) = 0 F(0)=0, F ( 1 ) = 1 F(1) = 1 F(1)=1, F ( n ) = F ( n − 1 ) + F ( n − 2 ) F(n) = F(n - 1) + F(n - 2) F(n)=F(n−1)+F(n−2)( n ≥ 2 n \geq 2 n≥2)。也就是说,第 n n n 项的值等于第 n − 1 n - 1 n−1 项和第 n − 2 n - 2 n−2 项的值之和。
汉诺塔原理
汉诺塔问题的解决思路是通过递归将 n n n 个圆盘的移动问题分解为 n − 1 n - 1 n−1 个圆盘的移动问题。具体步骤如下:
- 将上面的 n − 1 n - 1 n−1 个圆盘从起始柱子移动到中间柱子。
- 将最大的圆盘从起始柱子移动到目标柱子。
- 将中间柱子上的 n − 1 n - 1 n−1 个圆盘移动到目标柱子。
Mermaid 流程图
递归算法流程图
斐波那契数列递归流程图
graph TD;
A[计算 F(n)] --> B{是否 n == 0 或 n == 1};
B -- 是 --> C[返回 n];
B -- 否 --> D[计算 F(n - 1)];
D --> E[计算 F(n - 2)];
E --> F[F(n) = F(n - 1) + F(n - 2)];
F --> G[返回 F(n)];
C --> G;
汉诺塔递归流程图
核心算法原理 & 具体操作步骤
递归算法核心原理
递归算法的核心思想是分治法,即将一个复杂的问题分解为若干个规模较小、结构相同的子问题,然后递归地解决这些子问题,最后将子问题的解合并得到原问题的解。递归算法通常包含以下两个部分:
- 基本情况(终止条件):当问题规模足够小,能够直接求解时,递归停止。
- 递归步骤:将原问题分解为若干个规模更小的子问题,然后递归地调用自身来解决这些子问题。
斐波那契数列算法实现(Python 代码)
def fibonacci(n):
# 终止条件
if n == 0 or n == 1:
return n
# 递归调用
return fibonacci(n - 1) + fibonacci(n - 2)
# 测试代码
n = 5
result = fibonacci(n)
print(f"斐波那契数列的第 {n} 项是: {result}")
代码解释
- 当 n n n 等于 0 或 1 时,直接返回 n n n,这是终止条件。
- 当 n n n 大于 1 时,函数会递归地调用自身,计算 F ( n − 1 ) F(n - 1) F(n−1) 和 F ( n − 2 ) F(n - 2) F(n−2),然后将它们相加得到 F ( n ) F(n) F(n)。
汉诺塔算法实现(Python 代码)
def hanoi(n, source, auxiliary, target):
# 终止条件
if n == 1:
print(f"将圆盘 1 从 {source} 移动到 {target}")
return
# 递归步骤
hanoi(n - 1, source, target, auxiliary)
print(f"将圆盘 {n} 从 {source} 移动到 {target}")
hanoi(n - 1, auxiliary, source, target)
# 测试代码
n = 3
hanoi(n, 'A', 'B', 'C')
代码解释
- 当 n n n 等于 1 时,直接将圆盘从源柱子移动到目标柱子,这是终止条件。
- 当 n n n 大于 1 时,函数会先将上面的 n − 1 n - 1 n−1 个圆盘从源柱子移动到辅助柱子,然后将最大的圆盘从源柱子移动到目标柱子,最后再将 n − 1 n - 1 n−1 个圆盘从辅助柱子移动到目标柱子。
数学模型和公式 & 详细讲解 & 举例说明
斐波那契数列数学模型
斐波那契数列的数学定义可以用递归公式表示为:
F
(
n
)
=
{
0
,
n
=
0
1
,
n
=
1
F
(
n
−
1
)
+
F
(
n
−
2
)
,
n
≥
2
F(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F(n - 1) + F(n - 2), & n \geq 2 \end{cases}
F(n)=⎩
⎨
⎧0,1,F(n−1)+F(n−2),n=0n=1n≥2
详细讲解
- 当 n = 0 n = 0 n=0 时, F ( 0 ) = 0 F(0) = 0 F(0)=0,这是数列的第一项。
- 当 n = 1 n = 1 n=1 时, F ( 1 ) = 1 F(1) = 1 F(1)=1,这是数列的第二项。
- 当 n ≥ 2 n \geq 2 n≥2 时,第 n n n 项的值等于第 n − 1 n - 1 n−1 项和第 n − 2 n - 2 n−2 项的值之和。
举例说明
假设我们要计算斐波那契数列的第 5 项,根据公式:
- F ( 0 ) = 0 F(0) = 0 F(0)=0
- F ( 1 ) = 1 F(1) = 1 F(1)=1
- F ( 2 ) = F ( 1 ) + F ( 0 ) = 1 + 0 = 1 F(2) = F(1) + F(0) = 1 + 0 = 1 F(2)=F(1)+F(0)=1+0=1
- F ( 3 ) = F ( 2 ) + F ( 1 ) = 1 + 1 = 2 F(3) = F(2) + F(1) = 1 + 1 = 2 F(3)=F(2)+F(1)=1+1=2
- F ( 4 ) = F ( 3 ) + F ( 2 ) = 2 + 1 = 3 F(4) = F(3) + F(2) = 2 + 1 = 3 F(4)=F(3)+F(2)=2+1=3
- F ( 5 ) = F ( 4 ) + F ( 3 ) = 3 + 2 = 5 F(5) = F(4) + F(3) = 3 + 2 = 5 F(5)=F(4)+F(3)=3+2=5
汉诺塔数学模型
汉诺塔问题的移动次数可以用递推公式表示为:
T
(
n
)
=
{
1
,
n
=
1
2
T
(
n
−
1
)
+
1
,
n
≥
2
T(n) = \begin{cases} 1, & n = 1 \\ 2T(n - 1) + 1, & n \geq 2 \end{cases}
T(n)={1,2T(n−1)+1,n=1n≥2
详细讲解
- 当 n = 1 n = 1 n=1 时,只需要移动 1 次,即 T ( 1 ) = 1 T(1) = 1 T(1)=1。
- 当 n ≥ 2 n \geq 2 n≥2 时,我们需要先将上面的 n − 1 n - 1 n−1 个圆盘从源柱子移动到辅助柱子,移动次数为 T ( n − 1 ) T(n - 1) T(n−1);然后将最大的圆盘从源柱子移动到目标柱子,移动 1 次;最后再将 n − 1 n - 1 n−1 个圆盘从辅助柱子移动到目标柱子,移动次数为 T ( n − 1 ) T(n - 1) T(n−1)。所以总的移动次数为 2 T ( n − 1 ) + 1 2T(n - 1) + 1 2T(n−1)+1。
举例说明
假设我们有 3 个圆盘,根据公式:
- T ( 1 ) = 1 T(1) = 1 T(1)=1
- T ( 2 ) = 2 T ( 1 ) + 1 = 2 × 1 + 1 = 3 T(2) = 2T(1) + 1 = 2 \times 1 + 1 = 3 T(2)=2T(1)+1=2×1+1=3
- T ( 3 ) = 2 T ( 2 ) + 1 = 2 × 3 + 1 = 7 T(3) = 2T(2) + 1 = 2 \times 3 + 1 = 7 T(3)=2T(2)+1=2×3+1=7
所以,移动 3 个圆盘需要 7 次。
项目实战:代码实际案例和详细解释说明
开发环境搭建
为了运行我们的递归算法代码,我们需要搭建一个 Python 开发环境。以下是具体步骤:
- 安装 Python:访问 Python 官方网站(https://www.python.org/downloads/),下载并安装适合你操作系统的 Python 版本。
- 安装开发工具:可以选择使用 PyCharm、VS Code 等集成开发环境(IDE),也可以使用简单的文本编辑器(如 Notepad++)。
源代码详细实现和代码解读
斐波那契数列项目实战
# 定义斐波那契函数
def fibonacci(n):
# 终止条件
if n == 0 or n == 1:
return n
# 递归调用
return fibonacci(n - 1) + fibonacci(n - 2)
# 测试代码
n = 10
result = fibonacci(n)
print(f"斐波那契数列的第 {n} 项是: {result}")
代码解读
fibonacci
函数接受一个整数参数 n n n,表示要计算的斐波那契数列的项数。- 当 n n n 等于 0 或 1 时,函数直接返回 n n n,这是递归的终止条件。
- 当 n n n 大于 1 时,函数会递归地调用自身,计算 F ( n − 1 ) F(n - 1) F(n−1) 和 F ( n − 2 ) F(n - 2) F(n−2),然后将它们相加得到 F ( n ) F(n) F(n)。
汉诺塔项目实战
# 定义汉诺塔函数
def hanoi(n, source, auxiliary, target):
# 终止条件
if n == 1:
print(f"将圆盘 1 从 {source} 移动到 {target}")
return
# 递归步骤
hanoi(n - 1, source, target, auxiliary)
print(f"将圆盘 {n} 从 {source} 移动到 {target}")
hanoi(n - 1, auxiliary, source, target)
# 测试代码
n = 4
hanoi(n, 'A', 'B', 'C')
代码解读
hanoi
函数接受四个参数: n n n 表示圆盘的数量,source
表示源柱子,auxiliary
表示辅助柱子,target
表示目标柱子。- 当 n n n 等于 1 时,函数直接将圆盘从源柱子移动到目标柱子,并打印移动信息,这是递归的终止条件。
- 当 n n n 大于 1 时,函数会先将上面的 n − 1 n - 1 n−1 个圆盘从源柱子移动到辅助柱子,然后将最大的圆盘从源柱子移动到目标柱子,最后再将 n − 1 n - 1 n−1 个圆盘从辅助柱子移动到目标柱子。
代码解读与分析
斐波那契数列代码分析
斐波那契数列的递归实现虽然简单直观,但存在一个问题,就是会有大量的重复计算。例如,在计算 F ( 5 ) F(5) F(5) 时,会多次计算 F ( 3 ) F(3) F(3) 和 F ( 2 ) F(2) F(2) 等。这会导致时间复杂度呈指数级增长,为 O ( 2 n ) O(2^n) O(2n)。可以使用迭代或记忆化搜索等方法来优化时间复杂度。
汉诺塔代码分析
汉诺塔的递归实现是一种非常经典的解法,它将一个复杂的问题分解为简单的子问题。时间复杂度为 O ( 2 n ) O(2^n) O(2n),因为每增加一个圆盘,移动次数就会翻倍。空间复杂度为 O ( n ) O(n) O(n),主要是递归调用栈的深度。
实际应用场景
斐波那契数列的实际应用
- 自然界中的应用:斐波那契数列在自然界中广泛存在,例如植物的叶子排列、花朵的花瓣数量等。通过研究斐波那契数列,可以更好地理解自然界的生长规律。
- 金融领域的应用:在金融市场中,斐波那契数列可以用于分析股票价格的波动和趋势。例如,斐波那契回撤线是一种常用的技术分析工具,用于预测股票价格的支撑位和阻力位。
- 计算机科学中的应用:斐波那契数列在算法设计和数据结构中也有应用,例如斐波那契堆是一种高效的数据结构,用于实现优先队列。
汉诺塔的实际应用
- 教育领域的应用:汉诺塔问题是一种经典的逻辑思维训练题目,可以帮助学生培养递归思维和问题解决能力。
- 计算机科学中的应用:汉诺塔问题的递归解法可以用于理解递归算法的原理和应用,也可以用于优化某些算法的实现。
- 工业领域的应用:在工业生产中,汉诺塔问题的思想可以用于解决一些复杂的调度和排序问题,例如任务调度、物流配送等。
工具和资源推荐
学习工具
- Python 官方文档:Python 官方网站提供了详细的文档和教程,是学习 Python 编程的最佳资源之一。
- LeetCode:一个在线编程平台,提供了大量的算法题目,包括斐波那契数列和汉诺塔等经典问题。通过在 LeetCode 上练习,可以提高自己的算法能力和编程水平。
- Coursera 和 edX:这两个在线学习平台提供了许多关于算法和数据结构的课程,包括递归算法的详细讲解和实践。
书籍推荐
- 《算法导论》:这是一本经典的算法教材,详细介绍了各种算法的原理和实现,包括递归算法。
- 《Python 数据结构与算法分析》:这本书以 Python 语言为基础,介绍了数据结构和算法的基本概念和实现,适合初学者学习。
- 《编程珠玑》:这本书通过实际案例,介绍了编程中的一些技巧和方法,包括递归算法的应用。
未来发展趋势与挑战
未来发展趋势
- 人工智能领域的应用:递归算法在人工智能领域有着广泛的应用前景,例如在深度学习中的递归神经网络(RNN)和长短期记忆网络(LSTM)等。这些网络可以处理序列数据,如语音、文本等。
- 量子计算领域的应用:随着量子计算技术的发展,递归算法可能会在量子计算中得到新的应用。量子计算具有强大的并行计算能力,可以大大提高递归算法的效率。
- 跨学科领域的应用:递归算法可以与其他学科相结合,如生物学、物理学等,解决一些复杂的跨学科问题。例如,在生物学中,递归算法可以用于分析生物进化的过程。
挑战
- 性能问题:递归算法的时间复杂度和空间复杂度通常较高,尤其是在处理大规模问题时,会导致性能下降。因此,如何优化递归算法的性能是一个重要的挑战。
- 理解和调试困难:递归算法的思想比较抽象,理解和调试起来比较困难。对于初学者来说,掌握递归算法的原理和实现需要一定的时间和精力。
- 递归深度限制:在某些编程语言中,递归调用的深度是有限制的。当递归深度超过限制时,会导致栈溢出错误。因此,需要合理设计递归算法,避免递归深度过大。
总结:学到了什么?
核心概念回顾
- 递归算法:递归算法是一种函数自己调用自己的算法,它通过将大问题分解成小问题,不断递归调用自身,直到满足终止条件。
- 斐波那契数列:斐波那契数列是一个著名的数列,从第三项开始,每一项都等于前两项之和。可以用递归算法来计算斐波那契数列的任意一项。
- 汉诺塔:汉诺塔是一个经典的数学谜题,通过递归算法可以将其分解为简单的子问题,从而解决将圆盘从一根柱子移动到另一根柱子的问题。
概念关系回顾
- 递归算法是解决斐波那契数列和汉诺塔问题的核心方法,通过递归调用可以利用问题的递归性质,将复杂问题简化。
- 斐波那契数列和汉诺塔问题都具有递归结构,它们可以作为递归算法的经典案例,帮助我们理解和掌握递归算法的原理和应用。
思考题:动动小脑筋
思考题一:你能想到生活中还有哪些地方用到了递归的思想吗?
思考题二:如果要计算斐波那契数列的前 20 项,递归算法会有什么问题?如何优化?
思考题三:在汉诺塔问题中,如果有 4 根柱子,应该如何移动圆盘?
附录:常见问题与解答
问题一:递归算法一定会导致栈溢出吗?
不一定。如果递归深度较小,并且每次递归调用的栈空间占用不大,就不会导致栈溢出。但是,如果递归深度过大,或者每次递归调用的栈空间占用较大,就可能会导致栈溢出。可以通过优化递归算法,如使用迭代或尾递归等方法,来避免栈溢出问题。
问题二:斐波那契数列的递归实现和迭代实现有什么区别?
递归实现简单直观,但存在大量的重复计算,时间复杂度为 O ( 2 n ) O(2^n) O(2n)。迭代实现通过循环的方式,避免了重复计算,时间复杂度为 O ( n ) O(n) O(n)。因此,在计算斐波那契数列的较大项时,迭代实现的效率更高。
问题三:汉诺塔问题的移动次数是如何计算的?
汉诺塔问题的移动次数可以用递推公式 T ( n ) = 2 T ( n − 1 ) + 1 T(n) = 2T(n - 1) + 1 T(n)=2T(n−1)+1 计算,其中 T ( 1 ) = 1 T(1) = 1 T(1)=1。通过递推公式可以得到 T ( n ) = 2 n − 1 T(n) = 2^n - 1 T(n)=2n−1。
扩展阅读 & 参考资料
- Python 官方文档:https://docs.python.org/
- LeetCode 官网:https://leetcode.com/
- Coursera 在线学习平台:https://www.coursera.org/
- edX 在线学习平台:https://www.edx.org/
- 《算法导论》(原书第 3 版),Thomas H. Cormen 等著
- 《Python 数据结构与算法分析》(第 2 版),Brad Miller 和 David Ranum 著
- 《编程珠玑》(第 2 版),Jon Bentley 著