搜索领域重排序:探索搜索结果的最佳排列方式

搜索领域重排序:探索搜索结果的最佳排列方式

关键词:搜索排序、Learning to Rank、神经网络排序、NDCG优化、语义匹配、多模态搜索、个性化推荐

摘要:本文深入探讨搜索领域重排序技术,从传统算法到深度学习模型的演进历程。通过分析排序模型的数学原理,结合微软MS MARCO数据集实战案例,展示如何构建基于BERT的神经排序系统。文章涵盖从特征工程到模型优化的完整流程,并展望多模态融合与实时个性化排序的未来发展方向。

1. 背景介绍

1.1 目的和范围

搜索重排序是信息检索系统的核心环节,本文旨在:

  • 解析排序算法的演进脉络
  • 剖析深度学习在排序中的应用
  • 提供可落地的工程实现方案
  • 探讨未来技术发展方向

1.2 预期读者

  • 搜索算法工程师
  • 推荐系统开发者
  • 自然语言处理研究人员
  • 信息检索领域学习者

1.3 文档结构概述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

用户查询
召回模块
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值