1. 引言:人形运动控制的挑战与范式迁移
人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:
- 模型失配:复杂接触动力学(如足-地交互)难以显式建模;
- 计算瓶颈:高维非线性优化难以满足实时性需求;
- 环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。
近年来,以强化学习(RL)为代表的数据驱动方法,以及神经微分方程(Neural DEs)的隐式建模技术,为上述问题提供了新的解决路径。
2. 强化学习在人形运动控制中的突破与局限
2.1 基于模型的强化学习(Model-Based RL)
技术核心:通过环境交互数据学习动力学模型 f(st+1∣st,at),并基于此模型进行策略优化(如MPC+RL混合框架)。
- 案例:Boston Dynamics Atlas机器人采用基于物理模型的RL实现动态平衡;
- 优势:样本效率高于无模型RL;
- 局限:模型误差累积问题显著,尤其在接触突变场景中。
2.2 无模型强化学习(Model-Free RL)
技术核心:直接优化策略网络 πθ(a∣s) 或价值函数 Q(s,a),代表性算法包括PPO、SAC、DDPG。
- 案例:OpenAI的“人形机器人跑酷”项目通过大规模仿真训练实现复杂地形适应;
- 优势:摆脱显式模型依赖,策略灵活性高;
- 局限:训练成本极高(百万级仿真步),且策略可解释性差。
2.3 分层强化学习(Hierarchical RL)
技术核心:将运动控制分解为高层任务规划(如步态生成)与底层关节控制(如扭矩优化)。
- 案例:DeepMind的“AlphaDog”项目通过分层RL实现动态步态切换;
- 挑战:子模块耦合性强,层级间奖励函数设计复杂。
3. 神经微分方程:动力学隐式建模的革新
3.1 神经ODE:连续时间动力学建模
数学形式:
dtds=fθ(s(t),a(t))
其中 fθ 由神经网络参数化,通过伴随方法实现高效梯度反传。
- 优势:
- 自然处理连续时间系统,避免离散化误差;
- 可嵌入物理先验(如Hamiltonian结构);
- 应用:ETH Zurich将Neural ODE用于人形关节力矩预测,精度提升30%。
3.2 神经SDE:随机动力学与鲁棒控制
数学形式:
ds=fθ(s,t)dt+gϕ(s,t)dWt
引入随机项 dWt 以建模环境不确定性,适用于抗干扰控制。
- 案例:MIT团队通过Neural SDE实现人形机器人在滑动地面上的稳定行走。
3.3 符号回归与物理嵌入神经DE
技术路径:结合符号回归(Symbolic Regression)与神经网络,构建可解释的混合模型。
- 示例:dtds=物理模型M−1(q)(τ−C(q,q˙))+神经网络修正项ϵ⋅fθ(q,q˙)其中 M(q) 为惯量矩阵,C(q,q˙) 为科氏力项,ϵ 为可学习参数。
4. 融合范式:RL与神经DE的协同进化
4.1 基于神经DE的模型强化学习
架构:将神经DE作为动力学模型嵌入MBRL框架,实现更精准的长期预测。
- 训练流程:
- 收集环境交互数据 {(st,at,st+1)};
- 训练神经DE模型 f^θ 最小化 ∣∣st+1−f^θ(st,at)∣∣;
- 基于 f^θ 进行策略优化(如CEM、MPC)。
4.2 混合控制架构
设计:底层控制器采用神经DE实现关节级动态补偿,高层决策使用RL进行任务规划。
- 案例:UC Berkeley的“DE+RL”框架在Cassie双足机器人上实现能耗降低22%。
5. 挑战与未来方向
- 数据效率:如何在小样本场景下联合训练RL与神经DE?
- 实时部署:神经DE的数值求解速度优化(如自适应步长ODE求解器);
- 安全约束:将硬约束(如关节力矩限制)嵌入神经DE的微分方程结构;
- 理论突破:探索神经DE的Lyapunov稳定性证明方法。
前沿方向:
- 因果神经DE:引入因果推理减少无关状态干扰;
- 量子化ODE求解器:利用量子计算加速高维微分方程求解。
6. 结语
从强化学习到神经微分方程,人形机器人运动控制正经历从“黑箱模型”到“物理可解释建模”的范式迁移。未来技术的核心在于多模态学习框架(物理模型+数据驱动+符号知识)的深度融合,以及软硬件协同设计(如专用ODE求解芯片)的工程创新。