【动态规划】14. 简单多状态 dp 问题:删除并获得点数

删除并获得点数


1. 题目链接


740. 删除并获得点数 - 力扣(LeetCode)


2. 题目描述


给你一个整数数组 nums,你可以对它进行一些操作。

每次操作中,选择任意一个 nums[i],删除它并获得 nums[i] 的点数。

之后,你必须删除所有等于 nums[i] - 1nums[i] + 1 的元素。

开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:

输入:

nums = [3,4,2]

输出:

6

解释:

删除 4 获得 4 个点数,因此 3 也被删除。之后,删除 2 获得 2 个点数。总共获得 6 个点数。

示例 2:

输入:

nums = [2,2,3,3,3,4]

输出:

9

解释:

删除 3 获得 3 个点数,接着要删除两个 2 和 4。之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。总共获得 9 个点数。


3. 解法(动态规划)


算法思路:

其实这道题依旧是「打家劫舍 I」问题的变型。

我们注意到题目描述,选择数字 x 的时候,x - 1x + 1 是不能被选择的。

这和「打家劫舍」问题中,选择第 i 个位置的金额之后,就不能选择第 i - 1 个位置以及第 i + 1 个位置的金额非常相似。

image-20250703113607549

因此,我们可以创建一个大小为 10001(根据题目的数据范围)的数组 arr,将 nums 数组中每一个元素 x,累加到 arr 数组下标为 x 的位置处,然后在 arr 数组上进行一次「打家劫舍」即可。


4. 算法代码


class Solution {
    public int deleteAndEarn(int[] nums) {
        int n = 10001; // 根据题目数据范围
        int[] arr = new int[n];
        // 将 nums 统计到 arr , nums 不需要排序
        for (int x : nums) {
            arr[x] += x; // 累加每个数字的点数
        }

        int[] f = new int[n]; // 选择当前数字的最大点数
        int[] g = new int[n]; // 不选择当前数字的最大点数
        f[0] = arr[0]; // 初始化

        for (int i = 1; i < n; i++) {
            f[i] = g[i - 1] + arr[i]; // 选择当前数字,前一个数字不能选
            g[i] = Math.max(f[i - 1], g[i - 1]); // 不选择当前数字,取前一个数字选或不选的最大值
        }

        return Math.max(f[n - 1], g[n - 1]); // 返回最后的结果
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值