系列:AI驱动的学习型笔记系统(33/60)
阅读目标:构建一个知识图谱驱动的记忆状态系统,实现对每个知识点的记忆次数、遗忘时间、再现频率与复习路径的可视化追踪,提升长期记忆与学习规划的科学性。
🎯 一、模块目标与应用价值
用户需求/状态 | 系统反馈与功能设计 |
---|---|
想知道“哪些知识点最近忘了” | 高亮遗忘热力图 + 最近回顾时间线 |
想看某知识点“复习了几次/还记得多少” | 展示复现轨迹线 + 当前记忆概率 + 下次建议复习时间 |
想根据“遗忘程度”智能排复习顺序 | 根据 Ebbinghaus 遗忘模型 + 实际表现调整复习优先级 |
想从图谱中直接开始回顾 | 点击概念节点 → 弹出历史学习轨迹 + 下轮复习任务建议 |
🧱 二、记忆状态建模设计(结合知识图谱)
interface MemoryTrace {
conceptId: string
reviewTimes: number
lastReviewedAt: number
retentionScore: number // 0~100
predictedForgetAt: number // 用于复习推荐
reviewHistory: {
timestamp: number
performance: 'forgot' | 'partial' | 'mastered'
}[]
}
📌 每个概念节点绑定此结构,用于图谱中动态展示“记忆深度 + 遗忘风险”。
🔁 三、遗忘曲线计算机制(带个性化微调)
function predictRetentionScore(trace: MemoryTrace): number {
const now = Date.now()
const daysSinceLast = (now - trace.lastReviewedAt) / (1000 * 60 * 60 * 24)
const decayRate = trace.reviewTimes > 3 ? 0.1 : 0.3
return Math.max(0, 100 * Math.exp(-decayRate * daysSinceLast))
}
📌 可结合用户学习表现微调 decayRate → 拟合个体遗忘模型。
📊 四、图谱中的记忆轨迹可视化
图层元素 | 功能说明 |
---|---|
节点颜色 | retentionScore ≥ 80 → 绿色;≤ 50 → 红色 |
节点外圈动画 | 回忆频率高 → 多层圈环动画,表示“反复记忆形成深度连接” |
节点轨迹线 | 用户复习过的路径自动生成箭头动线,展示记忆“走过的路径” |
节点点击面板 | 弹出:复习历史、正确率、遗忘概率、推荐再练题、快速回顾入口等 |
📅 五、重现任务推荐策略
function recommendReviewFromMemory(): string[] {
const allTraces = getAllMemoryTraces()
return allTraces
.filter(t => predictRetentionScore(t) < 60)
.sort((a, b) => a.retentionScore - b.retentionScore)
.map(t => t.conceptId)
}
📌 系统每天自动生成“记忆再现清单”,也可在图谱中一键启动“今日复习路径”。
📋 六、图谱记忆仪表盘模块建议
区域 | 功能描述 |
---|---|
记忆总览雷达图 | 显示各领域知识的记忆分布(逻辑/几何/物理/函数等) |
概念热力回忆图 | 图谱中以热区图方式渲染每个知识点的 retentionScore |
回忆频率对比图 | 展示每个知识点复习次数 + 最长未复习时间 |
复现节奏管理区 | 显示每个节点的“推荐复习时间”与实际完成状态,配合提醒/任务卡输出 |
✅ 七、小结
模块能力 | 实现说明 |
---|---|
知识图谱记忆状态建模 | 为每个概念节点绑定 reviewHistory + 遗忘预测数据 |
遗忘曲线算法个性化 | 融合 Ebbinghaus 模型 + 用户历史表现,精确预测遗忘风险 |
复习轨迹可视化与动线反馈 | 支持在图谱上回放用户记忆路线,辅助复习路径决策与记忆巩固反馈 |
复现任务调度与优先级推荐机制 | 自动推荐“遗忘风险最高”的复习内容,并支持一键发起今日复现任务流程 |
📘 下一篇预告
第34篇|AI主题图谱生成系统:知识主题自动聚合 + 概念簇抽象 + 聚合练习与路径生成机制