- 博客(5)
- 收藏
- 关注
原创 开放性实验--轮廓提取
空域滤波算法(Sobel、Prewitt)的执行效率远高于频域滤波(BHPF),其中 Prewitt 算子最快,Sobel 算子因后处理略有增加但仍保持高效;频域滤波的效率瓶颈在于傅里叶变换及其逆变换的计算。Sobel 算子兼顾轮廓清晰度与效率,是日常场景的优选;Prewitt 算子主打快速简洁,适合实时性需求;巴特沃斯高通滤波则以平滑无锯齿的轮廓见长,适配对效果细腻度有要求的场景。
2025-11-18 00:43:43
912
原创 图像空域滤波
这才明白,没有 “万能算法”—— 高斯噪声对应高斯滤波,椒盐噪声认准中值滤波,选对工具比反复试错高效多了。:给周围像素 “加权”(中心像素权重高),再算平均,去噪的同时能少模糊一点,专门针对高斯噪声。:在 Prewitt 基础上,给中心像素更高权重,算变化率更准,抗噪声能力强,是最常用的方法。:把周围像素排序,取中间值替换当前像素,能直接剔除椒盐噪声的亮暗斑点,对这种噪声效果最好。均值滤波通过计算滤波核内所有像素的平均值,替换核中心像素的值,实现噪声平滑。:用于图像读取、滤波操作(均值、高斯、中值滤波)。
2025-10-19 23:34:41
868
原创 图像直方图与频域变换
在数字图像处理中,图像乘法运算(也称 “缩放运算”)是一种基础的点运算,核心是通过将图像每个像素的灰度值与一个常数(或另一幅图像的对应像素值)相乘,实现图像对比度调整、亮度缩放或特定区域掩码等功能。对于灰度图像,若有图像 f(x,y)和 h(x,y),相加后的图像 g(x,y)=f(x,y)+h(x,y);灰度变换的核心是建立原图像灰度值f(x,y)到输出图像灰度值 g(x,y)的映射关系 g(x,y) = T[f(x,y)],其中 T 是变换函数。变换仅基于单个像素的灰度值,与像素的位置和邻域无关。
2025-10-19 18:20:29
870
原创 基于 PyQt6+OpenCV 实现摄像头图像采集与手动标注(Windows 系统)
self.realtime_frame = None # 存储摄像头实时帧(用于预览)self.captured_frame = None # 存储点击“采集”时的静态截图(用于框选和保存)1.定义了继承自 QMainWindow 的 CameraApp 类作为主窗口2.__init__方法初始化了界面、摄像头对象和一些关键变量。
2025-09-25 23:52:21
1000
原创 图像与视频的加载与显示(Windows 系统)
2.在刚开始用cv2.VideoCapture(0)打不开摄像头,以为是代码错了,后来才发现是会议占用了设备,关掉后立马成功 —— 这让我明白,cap.isOpened()的判断不是多余的,是应对 “硬件占用” 这类实际问题的关键,也学会了用 “换参数(0 改 1)”排查摄像头问题。1.技术实操能力提升:在安装open-cv库时刚开始没有安装在对应的虚拟坏境中,导致程序运行错误,经历这一次,我可以熟练的安装库。2.能运用OpenCV的图像处理基本函数,开发图像加载与显示的程序,实现指定功能。
2025-09-13 21:53:03
846
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅