- 博客(7)
- 收藏
- 关注
原创 PCA 人脸识别实战:从特征脸 (Eigenfaces) 到 Python 实现
理论:通过降维保留主要特征,构建特征脸空间。实现:利用的 PCA 类简化计算,结合 OpenCV 完成图像预处理。分析:展示了特征脸的可视化结果,探讨了算法的局限性。特征脸算法的意义不仅在于它的实用性,更在于它开启了人脸识别技术的大门,为后来的深度学习方法奠定了基础。
2026-01-12 09:44:18
944
原创 SVM实战指南:二分类数据可视化与决策边界绘制
这篇博客将带你手把手完成,重点在于与。我们将使用 Python 中最流行的机器学习库,配合和来实现。
2026-01-11 00:48:19
250
原创 从“好瓜”识别到数值稳定性:朴素贝叶斯分类器的实战与进阶
在机器学习中,朴素贝叶斯(Naive Bayes)是最经典的生成式模型之一。它通过计算样本在各个类别下的后验概率,来判断样本的归属类别。本文将基于经典的(Watermelon Dataset),演示如何计算一个样本是“好瓜”的概率,并重点讲解(Laplacian Correction)如何解决特征概率为0的问题,以及它在防止概率下溢(Underflow)中的作用。
2026-01-11 00:48:11
723
原创 机器学习之决策树:预剪枝实战指南
在机器学习模型中,决策树(Decision Tree)因其可解释性强而备受青睐。然而,未经处理的决策树往往过于庞大,容易陷入过拟合。本文将重点探讨技术,结合实战案例,手把手教你构建高效的决策树模型。
2026-01-10 18:03:32
301
原创 决策树建模实战:从 scikit-learn 生成模型到精度评估全流程
数据准备:加载并查看数据。划分数据集:将数据集分为训练集和测试集。模型训练:使用生成模型。精度评估:通过测试模型在测试集上的准确率。模型可视化:使用plot_tree将抽象的模型转换为可视化的树形结构。通过上述步骤,你可以快速构建并评估自己的分类模型。随着数据特征的不同,你可以尝试调整max_depth(最大深度)、(最小分割样本数)等参数,以优化模型的性能。
2026-01-10 18:02:54
213
原创 机器学习实战:KNN分类模型的评价与可视化
K-Nearest Neighbors(K近邻)是一种基于实例的学习算法,适用于小数据集和特征空间可视化的任务。然而,KNN属于“软分类器”,默认输出类别标签,无法直接评估模型的置信度或概率分布。为了全面评估模型性能,我们需要绘制。生成一个模拟的二分类数据集。实际项目中,你可以替换为自己的数据(如鸢尾花数据集或MNIST手写数字集)。进行训练,并将邻居数量设置为3(K=3)。为了绘制ROC和PR曲线,我们需要使用。方法获取预测概率,而不是直接使用。
2026-01-09 00:50:41
229
原创 Anaconda3下载安装,环境配置教程
Anaconda3 是数据科学与机器学习领域的标准工具,核心在于利用conda创建独立的环境,从而实现项目间的库管理与版本控制。按照上述步骤安装并熟练使用conda,将大大提升你的 Python 开发效率。
2026-01-09 00:18:43
472
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅