【大数据】多维度气象数据的可视化分析系统 计算机毕业设计项目 Hadoop+Spark环境配置 数据科学与大数据技术 附源码+文档+讲解

一、个人简介

💖💖作者:计算机编程果茶熊
💙💙个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
计算机毕业设计选题
💕💕文末获取源码联系计算机编程果茶熊

二、系统介绍

大数据框架:Hadoop+Spark(Hive需要定制修改)
开发语言:Java+Python(两个版本都支持)
数据库:MySQL
后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django(两个版本都支持)
前端:Vue+Echarts+HTML+CSS+JavaScript+jQuery

多维度气象数据的可视化分析系统是一套基于大数据技术构建的综合性气象数据处理与分析平台。该系统采用Hadoop分布式存储架构和Spark计算引擎作为底层大数据处理框架,通过Python语言开发,后端使用Django框架提供稳定的Web服务,前端基于Vue.js结合ElementUI组件库和ECharts可视化库构建用户交互界面。系统核心技术栈包括HDFS分布式文件系统、Spark SQL结构化数据查询、Pandas数据分析库和NumPy科学计算库,数据持久化采用MySQL关系型数据库。系统主要功能涵盖用户权限管理、多维度气象数据的采集与管理、基于机器学习的异常检测分析、气象要素间的关联性分析、地理空间维度的气象分布分析、统计特征的深度挖掘分析、时间序列维度的趋势分析以及综合性的可视化展示大屏。该系统能够有效处理海量气象数据,为气象研究、环境监测和决策支持提供科学的数据分析工具和直观的可视化展示平台。

三、视频解说

【大数据】多维度气象数据的可视化分析系统 计算机毕业设计项目 Hadoop+Spark环境配置 数据科学与大数据技术 附源码+文档+讲解

四、部分功能展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、部分代码展示


from pyspark.sql import SparkSession
from pyspark.sql.functions import col, when, stddev, mean, max as spark_max, min as spark_min
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.stat import Correlation
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
from datetime import datetime, timedelta

spark = SparkSession.builder.appName("WeatherDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

@csrf_exempt
def anomaly_detection_analysis(request):
    if request.method == 'POST':
        data = json.loads(request.body)
        station_id = data.get('station_id')
        start_date = data.get('start_date')
        end_date = data.get('end_date')
        threshold_multiplier = data.get('threshold_multiplier', 2.5)
        weather_df = spark.sql(f"SELECT * FROM weather_data WHERE station_id = '{station_id}' AND date_time BETWEEN '{start_date}' AND '{end_date}'")
        temperature_stats = weather_df.select(mean(col("temperature")).alias("temp_mean"), stddev(col("temperature")).alias("temp_stddev")).collect()[0]
        humidity_stats = weather_df.select(mean(col("humidity")).alias("hum_mean"), stddev(col("humidity")).alias("hum_stddev")).collect()[0]
        pressure_stats = weather_df.select(mean(col("pressure")).alias("press_mean"), stddev(col("pressure")).alias("press_stddev")).collect()[0]
        temp_upper_bound = temperature_stats['temp_mean'] + threshold_multiplier * temperature_stats['temp_stddev']
        temp_lower_bound = temperature_stats['temp_mean'] - threshold_multiplier * temperature_stats['temp_stddev']
        hum_upper_bound = humidity_stats['hum_mean'] + threshold_multiplier * humidity_stats['hum_stddev']
        hum_lower_bound = humidity_stats['hum_mean'] - threshold_multiplier * humidity_stats['hum_stddev']
        press_upper_bound = pressure_stats['press_mean'] + threshold_multiplier * pressure_stats['press_stddev']
        press_lower_bound = pressure_stats['press_mean'] - threshold_multiplier * pressure_stats['press_stddev']
        anomaly_df = weather_df.withColumn("temp_anomaly", when((col("temperature") > temp_upper_bound) | (col("temperature") < temp_lower_bound), 1).otherwise(0)).withColumn("humidity_anomaly", when((col("humidity") > hum_upper_bound) | (col("humidity") < hum_lower_bound), 1).otherwise(0)).withColumn("pressure_anomaly", when((col("pressure") > press_upper_bound) | (col("pressure") < press_lower_bound), 1).otherwise(0))
        anomaly_records = anomaly_df.filter((col("temp_anomaly") == 1) | (col("humidity_anomaly") == 1) | (col("pressure_anomaly") == 1))
        anomaly_count = anomaly_records.count()
        total_count = weather_df.count()
        anomaly_percentage = (anomaly_count / total_count) * 100 if total_count > 0 else 0
        anomaly_summary = anomaly_records.groupBy("temp_anomaly", "humidity_anomaly", "pressure_anomaly").count().collect()
        result_data = {"anomaly_count": anomaly_count, "total_count": total_count, "anomaly_percentage": round(anomaly_percentage, 2), "threshold_bounds": {"temperature": {"upper": temp_upper_bound, "lower": temp_lower_bound}, "humidity": {"upper": hum_upper_bound, "lower": hum_lower_bound}, "pressure": {"upper": press_upper_bound, "lower": press_lower_bound}}, "anomaly_summary": [{"temp_anomaly": row.temp_anomaly, "humidity_anomaly": row.humidity_anomaly, "pressure_anomaly": row.pressure_anomaly, "count": row.count} for row in anomaly_summary]}
        return JsonResponse({"status": "success", "data": result_data})

@csrf_exempt
def weather_correlation_analysis(request):
    if request.method == 'POST':
        data = json.loads(request.body)
        region_id = data.get('region_id')
        start_date = data.get('start_date')
        end_date = data.get('end_date')
        weather_df = spark.sql(f"SELECT temperature, humidity, pressure, wind_speed, visibility FROM weather_data WHERE region_id = '{region_id}' AND date_time BETWEEN '{start_date}' AND '{end_date}' AND temperature IS NOT NULL AND humidity IS NOT NULL AND pressure IS NOT NULL AND wind_speed IS NOT NULL AND visibility IS NOT NULL")
        feature_columns = ["temperature", "humidity", "pressure", "wind_speed", "visibility"]
        assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
        weather_vector_df = assembler.transform(weather_df)
        correlation_matrix = Correlation.corr(weather_vector_df, "features", "pearson").head()
        correlation_array = correlation_matrix[0].toArray()
        correlation_results = {}
        for i, col1 in enumerate(feature_columns):
            correlation_results[col1] = {}
            for j, col2 in enumerate(feature_columns):
                correlation_results[col1][col2] = float(correlation_array[i][j])
        strong_correlations = []
        for i, col1 in enumerate(feature_columns):
            for j, col2 in enumerate(feature_columns):
                if i < j and abs(correlation_array[i][j]) > 0.7:
                    strong_correlations.append({"variable1": col1, "variable2": col2, "correlation": float(correlation_array[i][j]), "strength": "strong positive" if correlation_array[i][j] > 0.7 else "strong negative"})
        weather_stats = weather_df.select([mean(col(c)).alias(f"{c}_mean") for c in feature_columns] + [stddev(col(c)).alias(f"{c}_stddev") for c in feature_columns]).collect()[0]
        descriptive_stats = {col: {"mean": weather_stats[f"{col}_mean"], "stddev": weather_stats[f"{col}_stddev"]} for col in feature_columns}
        return JsonResponse({"status": "success", "data": {"correlation_matrix": correlation_results, "strong_correlations": strong_correlations, "descriptive_statistics": descriptive_stats, "analysis_period": {"start_date": start_date, "end_date": end_date}, "data_points": weather_df.count()}})

@csrf_exempt
def spatial_weather_analysis(request):
    if request.method == 'POST':
        data = json.loads(request.body)
        analysis_date = data.get('analysis_date')
        latitude_range = data.get('latitude_range', [-90, 90])
        longitude_range = data.get('longitude_range', [-180, 180])
        grid_size = data.get('grid_size', 1.0)
        weather_df = spark.sql(f"SELECT station_id, latitude, longitude, temperature, humidity, pressure, wind_speed FROM weather_data WHERE DATE(date_time) = '{analysis_date}' AND latitude BETWEEN {latitude_range[0]} AND {latitude_range[1]} AND longitude BETWEEN {longitude_range[0]} AND {longitude_range[1]}")
        weather_df = weather_df.withColumn("lat_grid", (col("latitude") / grid_size).cast("int") * grid_size).withColumn("lon_grid", (col("longitude") / grid_size).cast("int") * grid_size)
        spatial_aggregation = weather_df.groupBy("lat_grid", "lon_grid").agg(mean("temperature").alias("avg_temperature"), mean("humidity").alias("avg_humidity"), mean("pressure").alias("avg_pressure"), mean("wind_speed").alias("avg_wind_speed"), spark_max("temperature").alias("max_temperature"), spark_min("temperature").alias("min_temperature"), stddev("temperature").alias("temp_variance")).collect()
        temperature_hotspots = [{"latitude": row.lat_grid, "longitude": row.lon_grid, "temperature": row.avg_temperature} for row in spatial_aggregation if row.avg_temperature and row.avg_temperature > 30]
        high_variance_areas = [{"latitude": row.lat_grid, "longitude": row.lon_grid, "variance": row.temp_variance} for row in spatial_aggregation if row.temp_variance and row.temp_variance > 5]
        spatial_summary = {"total_grid_cells": len(spatial_aggregation), "temperature_hotspots": len(temperature_hotspots), "high_variance_areas": len(high_variance_areas)}
        grid_data = [{"lat_grid": row.lat_grid, "lon_grid": row.lon_grid, "avg_temperature": row.avg_temperature, "avg_humidity": row.avg_humidity, "avg_pressure": row.avg_pressure, "avg_wind_speed": row.avg_wind_speed, "max_temperature": row.max_temperature, "min_temperature": row.min_temperature, "temp_variance": row.temp_variance} for row in spatial_aggregation]
        overall_stats = weather_df.agg(mean("temperature").alias("region_avg_temp"), spark_max("temperature").alias("region_max_temp"), spark_min("temperature").alias("region_min_temp"), mean("humidity").alias("region_avg_humidity")).collect()[0]
        return JsonResponse({"status": "success", "data": {"spatial_grid_data": grid_data, "temperature_hotspots": temperature_hotspots, "high_variance_areas": high_variance_areas, "spatial_summary": spatial_summary, "regional_statistics": {"avg_temperature": overall_stats.region_avg_temp, "max_temperature": overall_stats.region_max_temp, "min_temperature": overall_stats.region_min_temp, "avg_humidity": overall_stats.region_avg_humidity}, "analysis_parameters": {"grid_size": grid_size, "analysis_date": analysis_date, "coordinate_range": {"latitude": latitude_range, "longitude": longitude_range}}}})

六、部分文档展示

在这里插入图片描述

七、END

💕💕文末获取源码联系计算机编程果茶熊

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值