- 博客(15)
- 收藏
- 关注
原创 【计算机毕设】无查重 基于python豆瓣电影评论舆情数据可视化系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
豆瓣电影作为国内知名的电影评分和评论平台,积累了海量的电影信息,包括但不限于电影的基本资料(如名称、导演、演员、类型、上映年份等)、用户评分、影评内容等。: 选择合适的数据库系统(如 MySQL、SQLite 等)来存储电影数据,设计合理的数据库结构,包括电影信息表、评分表、类型表、导演表、演员表等,并建立表之间的关联关系,如通过外键关联电影和其类型、导演、演员等信息。: 提供多种筛选条件,如按电影类型、评分范围、上映时间范围、导演、演员等进行筛选,用户可以根据自己的需求快速定位到感兴趣的数据子集。
2024-11-15 15:21:09 750
原创 【卷积神经网络CNN】基于深度学习动物图像识别系统(完整系统源码+数据库+开发笔记+详细部署教程+启动教程)✅
深度学习框架使用TensorFlow或PyTorch作为深度学习框架,构建和训练卷积神经网络模型,支持高效的计算和灵活的模型设计。卷积神经网络(CNN)应用CNN技术进行图像分类和特征提取,利用多层卷积、池化和全连接层提升模型的识别能力。数据增强技术采用图像增强技术(如旋转、缩放、裁剪等)扩展训练数据集,提升模型的鲁棒性和泛化能力。计算机视觉算法集成计算机视觉算法(如边缘检测、图像分割等)提高交通标志的检测精度,辅助识别过程。用户界面开发。
2024-11-11 15:55:47 1206
原创 【Spark+Hive+hadoop】基于Spark+hadoop贴吧-微博热门交流平台数据分析舆情系统(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
市场洞察:帮助企业了解消费者对其产品、品牌及竞争对手的看法和态度,及时掌握市场动态,为产品研发、市场营销和品牌建设提供决策依据。政策制定:了解公众对政策的反馈和需求,为政府制定更加科学、合理的政策提供参考,提高政策的针对性和有效性。内容管理:帮助平台更好地管理和规范用户生成的内容,打击不良信息和违规行为,营造健康、积极的网络环境。本项目旨在利用 Spark、Hive 和 Hadoop 等大数据技术,构建一个高效的舆情分析系统,对贴吧和微博热门交流平台的数据进行深入挖掘和分析,为相关决策提供有力的数据支持。
2024-11-04 10:00:00 1901
原创 【Spark+Hive+hadoop】基于Spark+hadoop大数据空气质量数据分析预测系统(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
而大数据技术的出现,为空气质量数据分析和预测提供了新的解决方案。基于 Spark 和 Hive 的空气质量数据分析预测系统可以整合来自不同数据源的空气质量数据,包括传感器数据、气象数据、污染源数据等,通过对这些数据的深入分析,挖掘出空气质量的变化规律和影响因素,为空气质量的预测和管理提供科学依据。通过对空气质量的分析和预测,可以为城市规划、交通管理、能源利用等方面提供决策支持,实现城市的可持续发展。利用机器学习和深度学习等技术,对未来的空气质量进行准确预测,为环境保护部门和公众提供及时的空气质量预警信息。
2024-11-03 15:22:51 1223
原创 【Spark+Hive大数据】基于spark抖音数据分析预测舆情系统(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
本项目通过结合大数据技术与社交媒体分析,拓展了舆情研究的视野,提供了新的方法和思路,有助于推动相关领域的学术研究。项目的舆情分析可以揭示公众情绪与意见的变化,为政府和社会组织提供依据,帮助他们更好地理解公众需求与关切,从而推动社会沟通与理解的增进。项目的研究成果可为后续的舆情预警系统的设计与实现提供基础与参考,有助于提高舆情监测和应对的自动化和智能化水平。构建舆情预测模型,利用历史数据和实时数据,分析和预测舆情的发展趋势,帮助决策者提前识别潜在的舆情危机。
2024-10-26 18:09:17 1217
原创 【机器学习算法】基于python天气预测数据分析可视化系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
多元线性回归(Multiple Linear Regression)是一种用于预测目标变量与多个特征变量之间关系的统计分析方法。以下是对多元线性回归算法的介绍及其相关公司的一些信息。多元线性回归算法介绍概述多元线性回归是一种扩展的线性回归模型,旨在预测一个因变量(目标变量)与多个自变量(特征变量)之间的线性关系。其基本模型形式为:YYY 是因变量(目标变量)。β0β_0β0 是截距(当所有自变量为零时的值)。
2024-10-15 11:00:00 2855
原创 【数据分析+深度学习算法】基于深度学习音乐数据分析可视化推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
深度协同过滤(Deep Collaborative Filtering, DCF)深度协同过滤通过将传统协同过滤算法与深度神经网络(DNN)相结合,能够在用户和音乐之间挖掘更复杂的关系。用户和音乐的嵌入(Embedding):将用户和音乐映射到低维的向量空间中,形成嵌入向量。深度神经网络(DNN)学习用户和音乐的特征:使用DNN对用户和音乐嵌入向量进行处理,学习其深层次的特征表示。推荐结果的预测:通过神经网络的输出层预测用户对某首音乐的喜好程度或评分,进而进行推荐。
2024-10-14 15:44:03 1166
原创 【SnowNLP】基于python新能源汽车数据可视化舆情推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
前端框架:HTML,CSS,JAVASCRIPT,Echarts后端:Django数据处理框架:Pandas数据存储:Mysql编程语言:Python/Scala推荐算法:(1、ItemCF 2、UserCF)数据可视化:Echarts协同过滤算法(Collaborative Filtering)是推荐系统中常用的一种技术,主要用于根据用户的历史行为(如购买记录、评分、浏览记录等)来推荐用户可能感兴趣的项目。
2024-10-09 10:00:00 1426
原创 【Tensorflow】基于卷积神经网络(CNN)交通标志图像识别系统(完整系统源码+数据库+开发笔记+详细部署教程+启动教程)✅
深度学习框架使用TensorFlow或PyTorch作为深度学习框架,构建和训练卷积神经网络模型,支持高效的计算和灵活的模型设计。卷积神经网络(CNN)应用CNN技术进行图像分类和特征提取,利用多层卷积、池化和全连接层提升模型的识别能力。数据增强技术采用图像增强技术(如旋转、缩放、裁剪等)扩展训练数据集,提升模型的鲁棒性和泛化能力。计算机视觉算法集成计算机视觉算法(如边缘检测、图像分割等)提高交通标志的检测精度,辅助识别过程。用户界面开发。
2024-10-08 19:30:00 1240
原创 【协同过滤】基于python豆瓣图书数据分析可视化推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
前端框架:HTML,CSS,JAVASCRIPT,Echarts后端:Flask数据处理框架:Pandas数据存储:Mysql编程语言:Python/Scala推荐算法:(1、ItemCF 2、UserCF)数据可视化:Echarts协同过滤算法(Collaborative Filtering)是推荐系统中常用的一种技术,主要用于根据用户的历史行为(如购买记录、评分、浏览记录等)来推荐用户可能感兴趣的项目。
2024-10-08 14:22:54 1394
原创 【大数据分析】基于Spark大数据商品数据分析可视化系统(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
前端框架:Vue,JAVASCRIPT,Echats后端:Django大数据处理框架:Spark数据存储:HDFS、Hive编程语言:Python/Scala销量预测:Scikit-learn数据可视化:Echarts多元线性回归(Multiple Linear Regression)是一种常用的统计方法,用于研究多个自变量(输入特征)与一个因变量(输出结果)之间的线性关系。它是线性回归的扩展形式,通过引入多个自变量来构建更精确的预测模型。多元线性回归的数学表达式。
2024-09-20 16:30:38 2022
原创 【大数据分析】基于Spark哔哩哔哩数据分析舆情推荐系统 b站(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
该项目旨在基于Spark大数据处理框架,对哔哩哔哩平台的数据进行舆情分析和推荐系统的设计与实现。利用爬虫技术获取哔哩哔哩的相关数据,并使用Spark进行数据清洗、转换和存储。通过NLP技术对用户评论和弹幕进行情感分析,识别热点事件和用户情感倾向。基于用户的兴趣和舆情分析结果,构建个性化的推荐系统,向用户推荐相关内容。利用Spark Streaming对实现弹幕和评论进行分析,实现实时舆情监控与推荐。二、研究意义。
2024-09-13 15:38:29 3332
原创 【Spark+Hive】基于大数据招聘数据分析预测推荐系统(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)
基于Spark+Hive的大数据招聘数据分析预测推荐系统》旨在利用大数据技术(如Spark和Hive)对招聘数据进行分析,预测招聘趋势,并提供智能推荐功能。该系统可能包括以下几个方面:从拉钩招聘网站中收集招聘相关的大数据,并使用Hive进行存储与管理。对收集到的原始招聘数据进行清洗、去重、格式化等处理,使其适合后续的分析。使用Spark对招聘数据进行分析,包括招聘岗位、薪资水平、需求趋势等,帮助企业了解市场需求。基于历史数据,应用机器学习算法进行招聘趋势预测,例如预测某个岗位未来的需求量。
2024-09-09 15:23:49 1944 1
原创 【回归算法】医疗疾病感染动态大屏数据分析可视化预测系统(完整系统源码+数据库+开发笔记+详细部署教程)
本项目旨在构建一个基于回归算法的预测系统,用于可视化和分析疾病感染的动态变化。该系统将作为实时或接近实时的数据大屏,帮助用户监控和预测疾病传播趋势。系统将从好大夫平台爬虫途径收集大量疾病感染相关的数据。数据预处理步骤包括数据清洗、去噪、标准化等操作,以确保数据的准确性和一致性。通过对收集到的历史感染数据进行回归分析,系统将选择合适的回归算法(如线性回归、支持向量回归、随机森林回归等)进行趋势预测。根据不同的疾病类型或数据特性,可能需要选择不同的回归模型来优化预测效果。
2024-09-07 15:08:51 1299
原创 【Spark+Hive】基于大数据酒店数据分析推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)
前端:html,css,js,Echats后端:Django数据库:Mysql,Hive推荐算法:(1、ItemCF 2、UserCF)爬虫:selenium大数据框架: Spark。
2024-09-05 16:57:48 3697 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人