- 博客(3)
- 收藏
- 关注
原创 华为大咖说丨什么是竞争力?如何理解产品竞争力?
在 XX 客户场景下,端到端时延从 60ms 降低至 30ms,同比某产品平均低 15ms,用户卡顿率下降 5%,满意度评分从 3.8 提升至 4.6,投诉率下降 60%。这个问题对于研发来说,是一个非常朴素的问题,但是去年做一些项目总结的时候,我发现并不是每个人对竞争力具备内在的理解能力,或者看竞争力的视角存在很大的偏差。如果竞争力介绍只有我们自己的产品参数、技术架构、功能清单,却完全没有对标对象,或者对比只是虚构或模糊的,那最终呈现的不是竞争力,而是自我感动(self-high)。
2025-08-19 15:13:55
405
原创 华为大咖说丨AI 2.0时代,还需要数据标注吗?
最近我和一位朋友聊天,他说现在有一种说法:数据标注是AI 1.0时代(决策式AI)的产物,现在已经是AI 2.0 (生成式AI),数据标注已经成为过去时了。那么问题来了,。首先,决策式AI和生成式AI的本质区别是什么?人类在实际生产\生活过程中先发现并总结了规律,并通过选取有代表性的数据(数据标注是极其有效的手段),通过特征工程等方式,将其算法化。结果是:1个算法通过只能用于某场景下的某1类规律,泛化性弱。人们将高质量的语料喂给大模型,大模型不断自我学习,迭代出一堆规律。
2025-08-13 14:37:11
567
原创 华为大咖说 | 为什么最先突破的 Agent 会是编程类 Agent?
全文约2681字,阅读约需7分钟2025 年被视作智能体(Agent)技术爆发的元年,随着大语言模型(LLM)的迭代升级与多模态交互技术的成熟,各类垂类智能体如雨后春笋般涌现。在医疗问诊、智能客服、自动驾驶等众多赛道中,编程类 Agent之所以最有可能率先实现技术突破与规模化落地,源于其独特的领域属性与技术适配性。接下来,我将从七大核心维度展开分析。 大语言模型的核心能力在于对自然语言的理解与生成,而代码本质上是 “形式化的自然语言”。不少大模型都在代码生成任务中展现出惊人的潜力:✦ 技术验证:GitHu
2025-08-12 16:43:33
859
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人