自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 WebAssembly:开启高性能 Web 应用的新篇章

可编译为 JavaScript: WebAssembly 的设计允许它被编译成 JavaScript,这为在不支持 Wasm 的旧浏览器中的兼容性提供了可能(尽管现在主流现代浏览器都已支持)。JS 是“胶水”: JavaScript 扮演着“胶水”的角色,负责加载 Wasm 模块、实例化、管理 Wasm 内存、调用 Wasm 导出的函数,以及将 UI 交互事件传递给 Wasm。编译: 浏览器内置的 Wasm 引擎(例如,V8 引擎中的 Wasm 模块)将二进制的 .wasm 文件编译成机器码。

2025-09-09 15:13:18 719

原创 CSS in JS 的演进:Styled Components, Emotion 等的对比与选择

为了解决这些痛点,CSS-in-JS 应运而生,它允许开发者直接在 JavaScript 代码中编写 CSS,并将其与组件逻辑紧密结合,带来了前所未有的样式管理体验。CSS Modules + CSS-in-JS: 可以逐步将组件的样式迁移到 CSS-in-JS,实现新组件使用 CSS-in-JS,旧组件保持 CSS Modules。Linaria: 一个“零运行时”的 CSS-in-JS 库,它会在构建时将 CSS 提取到单独的文件中,并将类名注入到 JS 中,几乎没有运行时开销。

2025-09-09 15:10:36 947

原创 深度学习入门:从神经网络到反向传播

wnw_1, w_2, \dots, w_nw1,w2,…这里的 ∂zoutput∂yhidden\frac{\partial z_{\text{output}}}{\partial y_{\text{hidden}}}∂yhidden∂zoutput 是输出层与隐藏层之间的权重,而 ∂yhidden∂zhidden\frac{\partial y_{\text{hidden}}}{\partial z_{\text{hidden}}}∂zhidden∂yhidden 是隐藏层激活函数的导数。

2025-09-08 15:55:41 555

原创 码农的“必修课”:深度解析Rust的所有权系统(与C++内存模型对比)

拷贝(Copy): 对于实现了Copy trait(通常是实现了Drop trait 的简单类型,如整数、浮点数、布尔值、字符,以及自动实现了Copy的结构体/枚举)的类型,当变量赋值给另一个变量或者传递给函数时,数据会被“拷贝”,而不是转移所有权。在软件开发的世界里,内存管理是至关重要的一个环节。在这里,'a 就是一个生命周期注解,它告诉编译器,返回的字符串切片(&'a str)的生命周期,至少要和输入的两个字符串切片(x: &'a str, y: &'a str)中生命周期最短的那个一样长。

2025-09-05 18:21:06 290

原创 JavaScript 中的并发编程实践与误区:一次深入的探讨

在 Node.js 环境中,worker_threads 模块提供了与浏览器 Web Workers 类似的功能,允许你在独立的线程中运行JavaScript代码,实现真正的并行计算。Web Workers 是例外,它们创建的是独立的JS线程。微任务队列 (Microtask Queue): 包含比宏任务(Callback Queue中的任务)有更高优先级的任务,如 Promise 的 .then()、.catch()、.finally() 的回调,以及 queueMicrotask()。

2025-09-05 18:19:23 572

原创 JavaScript 源码剖析:从字节码到执行的奇妙旅程

今天,让我们一起踏上一段奇妙的旅程,深入剖析JavaScript引擎(以V8引擎为例)的源码,了解我们的代码是如何一步步从文本形式,转化为机器可以理解并执行的指令的。TurboFan (优化编译器): 当代码被执行多次(热代码),并且积累了足够的类型信息(例如,某个函数总是接收数字类型的参数),TurboFan就会介入,对这部分“热代码”进行深度优化,生成高度优化的本地机器码。因此,JavaScript引擎就扮演了关键的角色,它负责将我们写的JS代码,翻译成计算机可以执行的低级指令。

2025-09-05 18:17:41 506

原创 BERT家族进化史:从BERT到LLaMA,每一次飞跃都源于对“学习”的更深理解

RoPE(Rotary Positional Embeddings): LLaMA使用旋转位置嵌入(Rotary Positional Embeddings),它将位置信息编码到Query和Key的旋转角度中,不同于BERT中的绝对位置编码或RoBERTa/ALBERT中的相对位置编码,RoPE在处理长序列时表现更优,也更容易外推到更长的文本。在BERT诞生之前,主流的NLP模型(如ELMo、GPT-1)在预训练时,大多采用单向或“填充式”的语言模型任务,这限制了它们对上下文信息的深度理解。

2025-09-04 16:53:55 372

原创 扩散模型 vs GAN:图像生成的两大流派,谁更适合生产环境?

局部编辑:Inpainting(局部重绘,如“修改模特的发型”)、Outpainting(扩展图像边界,如“将4:3的图扩展成16:9”)——Stable Diffusion的Inpaint功能已用于电商商品图修图(替换背景、调整商品角度);选扩散模型:文本生成图像、复杂场景(如电商、广告、自动驾驶数据)、需要精细编辑(Inpainting/Outpainting)——优先用Stable Diffusion XL(开源、生态全)、DALL-E 3(API调用、质量高);

2025-09-04 14:47:39 324

原创 大语言模型的“思考”逻辑:从Token生成到上下文理解的内部流程

而ChatGPT通过SFT+RLHF微调,学会了“简洁回答”“追问澄清”“拒绝不当问题”,本质是调整了参数中Token序列的概率分布(比如降低“冗余解释”的Token概率,提高“直接回答”的概率)。模型不会像人类一样“显性记忆”事实(如“法国首都是巴黎”),而是将知识编码为“Token序列的概率关联”:当输入“法国的首都是”,模型会计算下一个Token最可能是“巴”(概率90%),接着是“黎”(概率95%),这种高概率关联就是“记住了知识”。Token化后,模型进入核心的“上下文理解”阶段。

2025-09-04 14:45:00 503

原创 Meta-Learning入门:当AI学会“举一反三”——用MAML实现少样本图像分类 (Meta-Learning系列

模拟学习 (Simulated Inner-Loop Learning): 对于每个采样到的任务,使用少量数据(支持集 support set)对当前元模型的参数 θ 进行一到几步的梯度下降,得到一个针对该任务的“任务特定参数” θ'。简单来说,元学习的目标是训练一个“元模型”,这个元模型本身不直接解决具体问题,而是能够帮助我们快速生成或优化出针对新任务的“表现模型”。MAML 的核心在于,它会通过“模拟”新任务上的少量学习过程(一阶梯度更新),然后根据这个“模拟学习”的效果,来更新元模型的初始参数。

2025-09-03 17:06:44 501

原创 零样本学习 (Zero-Shot Learning):用CLIP打破“见过才认识”的界限

编码文本提示 (Encode Text Prompts): 使用CLIP的文本编码器处理所有候选类别(包括已知和未知类别)的文本提示,得到各自的文本特征向量 tclass1,tclass2,…原理: CLIP 训练过程中学习到的“对齐”的跨模态表示空间,使得在推理阶段,一个未见过类别的图像,即使没有与该类别的具体图像进行训练,但只要其视觉特征(例如,它是一只狗)能够与该类别的文本描述(例如,“a photo of a dog”)在语义表示空间中产生高相似度,CLIP 就能“理解”并预测出这个类别。

2025-09-03 17:05:48 561

原创 从 MMLU 到 HumanEval:为什么评估大型语言模型(LLM)的基准至关重要?

例如: "def fib(n):\n if n < 0:\n return 'Invalid input'\n elif n == 0:\n return 0\n elif n == 1:\n return 1\n else:\n a, b = 0, 1\n for _ in range(n - 1):\n a, b = b, a + b\n return b"MMLU 的核心思想是,一个真正强大的 LLM 应该能够像人类一样,在接触过的信息基础上,理解和回答各种专业领域的问题。

2025-09-03 17:05:02 1028

原创 多模态×AIGC:引爆AI应用的下一个超级风口

Quizlet(多模态记忆卡):用户输入「英语单词:aberration(偏差)」,AI生成例句(含语音朗读)、配图(如「靶心偏离的箭矢」)、记忆口诀(「A bee ration(蜜蜂的口粮)有偏差(aberration)」),提升记忆效率。」,地球仪自动显示数据;作业帮「喵喵机」:扫描数学题图片,AI不仅给出答案,还生成解题视频(手写步骤+语音讲解),若学生拍的是作文草稿,AI用文字标注修改建议(如「这里可以增加环境描写,比如‘夕阳的余晖洒在教室窗前’」),并生成修改后的范文;

2025-09-02 17:26:16 673

原创 《多模态与 AIGC:最火的 AI 应用方向》

多模态让 AI 能同时理解文字、图像、音频等多种信息,AIGC 则赋予 AI 自主创作内容的能力,二者结合打破单一模态局限,满足创意设计、智能交互等多场景需求,是 AI 从感知迈向创造的关键驱动力。未来,随着技术演进,多模态与 AIGC 将深度融入生活工作,创造丰富多样的内容与体验,推动 AI 迈向新高度。图像编码器将图像转低维特征,文本编码器将文本转特征表示,跨模态融合层通过多头注意力整合两种特征,实现对多模态信息的理解。AIGC 中,生成层依输入语义生成初步内容元素,解码层将元素整合成完整内容。

2025-09-02 17:25:44 522

原创 大模型微调数据准备全指南:清洗、标注与高质量训练集构造实战

{"conversations": [{"from": "human", "value": "什么是大模型?"}, {"from": "assistant", "value": "大模型是指参数量超过10亿的深度学习模型..."}]}若覆盖率不足,需补充对应场景的数据。{"from": "assistant", "value": "《Python编程:从入门到实践》适合零基础..."},{"from": "assistant", "value": "作者官网提供免费配套视频,可通过书中二维码访问..."}

2025-09-02 17:22:29 687

原创 《大模型微调数据准备:如何清洗、标注、构造高质量训练集》

训练数据是大模型学习任务特征的基础,通过让模型接触大量与目标任务相关的文本、图像等数据,模型能学习到任务所需的模式、语义等信息。例如,在微调用于情感分析的大模型时,需要大量标注好情感倾向的文本数据。统一数据格式:将清洗标注后的文本转换为模型所需的输入格式,例如 Transformer 模型通常需要输入 ID 序列、注意力掩码等。{"text": "这个产品太棒了,使用体验超棒", "label": "正向"},{"text": "这个服务太差劲了,完全不满意", "label": "负向"}

2025-09-02 10:35:57 451

原创 AI技术如何重塑你的工作与行业?从代码到决策的智能化革命

在过去的两年里,AI技术已经从实验室走向了各行各业的生产线,正在深刻改变着我们的工作方式和行业格局。从智能编码助手到医疗影像诊断,从金融风控到智能制造,AI不再是一个遥远的概念,而是成为了提升效率、优化决策的日常工具。本文将带您深入了解AI如何重塑软件开发、测试以及各行业应用的最新进展。

2025-09-02 09:59:03 1306

原创 车载卫星通信:让自动驾驶“永不掉线”?

传统5G基站覆盖范围有限(单基站覆盖1-3公里),遇到山区、海洋、荒漠等“信号黑洞”,自动驾驶如何“不掉线”?当5G像“城市路灯”照亮繁华地段,卫星通信就像“天上月亮”照亮荒野迷途——两者结合,才能让自动驾驶真正实现“从城市到全域”的跨越。车企采用“多模通信”策略:有5G信号时用5G(速度快),没5G时自动切换卫星通信(覆盖广),就像手机“Wi-Fi和流量自动切换”。简单说,车载卫星通信=“天上基站”,汽车通过车顶卫星天线(直径约30厘米,类似鲨鱼鳍)直接连接卫星,跳过地面基站,实现“无死角联网”。

2025-09-01 16:36:44 482

原创 从原理到实战:卷积神经网络(CNN)如何教会计算机“看懂”世界-只需4GB显存,用PyTorch实现MNIST手写数字识别,揭开CNN视觉识别的神秘面纱

本文将带您深入CNN的核心原理,从卷积层如何提取特征到全连接层如何进行最终判断,并通过完整的PyTorch代码实战,展示如何用不到4GB的显存训练一个准确率超过99%的手写数字识别模型。本文将带您深入CNN的核心原理,从卷积层如何提取特征到全连接层如何进行最终判断,并通过完整的PyTorch代码实战,展示如何用不到4GB的显存训练一个准确率超过99%的手写数字识别模型。从卷积层如何提取特征,到池化层如何压缩信息,再到全连接层如何做出最终决策,每个组件都在计算机视觉任务中发挥着不可替代的作用。

2025-09-01 16:12:32 862

原创 Claude Code 究竟牛在哪里?(以及如何在你的 AI 智能体中复刻它的魔法!)

作者:vivek / 2025-08-21原文:What makes Claude Code so damn good (and how to recreate that magic in your agent)!?Claude Code 是我迄今为止用过的最令人愉悦的 AI 智能体 (AI Agent) / 工作流。它不仅能让那些小修小补,或是凭感觉编程 (Vibe Coding) 写出来的一次性工具,不再那么烦人,甚至用它的时候我都会觉得很开心。

2025-08-26 15:29:45 448

原创 “都什么年代了程序员还在手搓代码,连小白都能写 Prompt 生成代码了”

用 AI 写代码还是手搓代码代码,都属于手段而不是目的,写代码的目的是为了构建产品。不是所有的场景都适合 AI 编程,很多时候还是得手写代码,所以会写代码依然是重要的基础能力,不要因为 AI 写代码强了而忽视了锻炼自己的编程能力。专业程序员就算手搓代码再熟练也需要多使用 AI Coding,让它成为自己有力的工具。非专业人士也不要瞧不起手搓代码,当你遇到 AI 解决不了的问题,还得找专业程序员去手搓代码帮你兜底。

2025-08-26 15:27:48 372

原创 程序员的提示工程实战手册分享

代码如下。它本应。

2025-08-26 15:26:56 358

原创 这是生成图像的核心魔法,成就了SD和Midjourney。解读《DDP Models》

噪声和高斯。1. 什么是“噪声”?想象一下这些场景:• 老式电视机没有信号时,屏幕上显示的“雪花点”。• 在光线很暗的地方拍照,照片上出现的彩色或黑白噪点。• 收音机调频到没有电台的频率时,听到的“沙沙”声。这些“雪花”、“噪点”、“沙沙声”就是噪声。在数字世界里(比如一张图片),噪声就是给原始、干净的数据(比如每个像素的颜色值)添加上的一些随机、无意义的扰动。它会破坏原始信息,让图片变得不清晰。2. 什么是“高斯”?“高斯”这个词描述的是这种随机扰动遵循的规律。

2025-08-25 14:42:58 835

原创 一文读懂蒸馏技术、暗知识。大神辛顿Hinton的神作,给中国打开了条路(人话解读论文)

而且,一个类别被越多的专家所“覆盖”(比如一张“哈士奇”图片,可能同时被“狗专家”、“雪橇犬专家”、“动物专家”覆盖),分类的准确率提升就越明显。这就好比一个学生没见过真老虎,但老师在教“猫”的时候总说“这东西和老虎很像,但小一点”,在教“狮子”的时候说“这和老虎都是猛兽”,久而久之,这个学生就对“老虎”有了一个概念。但如果数据集和模型都大到离谱(比如谷歌内部的JFT数据集,有1亿张图片,1.5万个分类),训练一个“全才”模型都要半年,训练一个由10个“全才”组成的集成模型就要等好几年,这显然不现实。

2025-08-25 14:28:03 787

原创 当应届生身份成为定时炸弹:一场无声的自我毁灭实验

当985毕业生在招聘会上背诵《劳动法》条款,当海归精英开始研究社保缴纳基数,当"慢就业"群体用gap year考取无人机驾驶证,他们实际上在进行一场无声的抵抗——证明在规则的重重迷宫中,年轻人依然可以找到破局之道。更危险的是"伪成长焦虑"——某985高校调研发现,76%的毕业生将"缺乏机会"作为能力不足的挡箭牌,却不愿承认自己从未完整参与过项目全周期。三个月前,他在某互联网公司实习期间签订劳动合同并缴纳社保,这个看似寻常的决定,让他的考公报名系统弹出刺眼的红色提示:"非应届生身份,报考资格不符"。

2025-08-23 16:17:04 313

原创 AI搜索时代GEO成新战场:企业如何选择优质服务商?

GEO作为AI时代品牌营销的新基建,其重要性不言而喻。企业在选择服务商时,切忌盲目跟风,应深入考察其技术底层、服务案例、适配能力与效果承诺。未来,随着AI技术的持续迭代,GEO领域的竞争将更趋白热化,那些真正能以技术创新驱动客户价值增长、以专业服务赢得市场信任的服务商,将在帮助企业抢占AI搜索高地的过程中扮演愈发重要的角色。对于企业而言,此刻正是布局GEO战略、与优质服务商携手,共同探索智能营销新可能的关键时期。

2025-08-12 10:38:14 636

Java开发基于若依RuoYi框架的快速开发平台对比分析:单体与多租户系统架构选型指南

开源世界以 RuoYi 取名的单体框架有三个不同的项目,分别是:ruoyi-vue 、ruoyi-vue-plus 、ruoyi-vue-pro

2025-09-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除