💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐
智能学习辅导系统介绍
智能学习辅导系统是一套基于大数据技术的教育辅助平台,采用Hadoop+Spark分布式计算框架处理海量学习数据,通过Python+Django后端架构和Vue+ElementUI前端技术栈构建完整的Web应用。系统核心功能包括学习资源管理、智能学习路径规划、学习数据深度分析和期末成绩预测等模块,能够收集学生的学习行为数据、课程完成情况、测试成绩等信息,运用Spark SQL进行数据清洗和特征工程,结合Pandas和NumPy进行统计分析和机器学习建模。系统通过HDFS存储大规模学习数据,利用Spark的分布式计算能力实现实时数据处理和分析,为学生提供个性化的学习建议和成绩预测服务。前端采用Echarts进行数据可视化展示,让学习分析结果更加直观易懂,同时支持资源分类管理和用户个人中心等基础功能,构建了一个集数据收集、分析、预测和可视化于一体的智能化学习辅导平台。
智能学习辅导系统演示视频
智能学习辅导系统开发 | 【大数据毕设项目】选题推荐 大数据可视化大屏 附源码 文档指导+ppt+运行部署+课程设计 Hadoop SPark java
智能学习辅导系统演示图片
智能学习辅导系统代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, sum, when, desc
from pyspark.ml.feature import VectorAssembler, StandardScaler
from pyspark.ml.regression import LinearRegression
from pyspark.ml.evaluation import RegressionEvaluator
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
spark = SparkSession.builder.appName("IntelligentLearningSystem").master("local[*]").config("spark.sql.adaptive.enabled", "true").getOrCreate()
@csrf_exempt
def analyze_learning_data(request):
if request.method == 'POST':
data = json.loads(request.body)
user_id = data.get('user_id')
learning_df = spark.sql(f"SELECT * FROM learning_records WHERE user_id = {user_id}")
daily_study_time = learning_df.groupBy("study_date").agg(sum("duration").alias("daily_duration"))
avg_daily_time = daily_study_time.agg(avg("daily_duration")).collect()[0][0]
subject_performance = learning_df.groupBy("subject").agg(avg("score").alias("avg_score"), count("*").alias("study_count"))
top_subjects = subject_performance.orderBy(desc("avg_score")).limit(3)
weak_subjects = subject_performance.filter(col("avg_score") < 70).orderBy("avg_score")
study_pattern = learning_df.groupBy("hour_of_day").agg(count("*").alias("frequency")).orderBy(desc("frequency"))
peak_hours = study_pattern.limit(3).rdd.map(lambda x: x.hour_of_day).collect()
completion_rate = learning_df.agg((sum(when(col("completion_status") == "completed", 1).otherwise(0)) / count("*") * 100).alias("completion_percentage")).collect()[0][0]
result = {
'avg_daily_study_time': round(avg_daily_time, 2),
'top_subjects': [{'subject': row.subject, 'score': round(row.avg_score, 2)} for row in top_subjects.collect()],
'weak_subjects': [{'subject': row.subject, 'score': round(row.avg_score, 2)} for row in weak_subjects.collect()],
'peak_study_hours': peak_hours,
'completion_rate': round(completion_rate, 2)
}
return JsonResponse(result)
@csrf_exempt
def predict_final_score(request):
if request.method == 'POST':
data = json.loads(request.body)
user_id = data.get('user_id')
subject = data.get('subject')
historical_data = spark.sql(f"SELECT * FROM student_scores WHERE subject = '{subject}'")
feature_data = historical_data.select("attendance_rate", "homework_score", "midterm_score", "participation_score", "study_time", "final_score")
assembler = VectorAssembler(inputCols=["attendance_rate", "homework_score", "midterm_score", "participation_score", "study_time"], outputCol="features")
feature_vector = assembler.transform(feature_data)
scaler = StandardScaler(inputCol="features", outputCol="scaled_features")
scaler_model = scaler.fit(feature_vector)
scaled_data = scaler_model.transform(feature_vector)
train_data, test_data = scaled_data.randomSplit([0.8, 0.2], seed=42)
lr = LinearRegression(featuresCol="scaled_features", labelCol="final_score")
lr_model = lr.fit(train_data)
predictions = lr_model.transform(test_data)
evaluator = RegressionEvaluator(labelCol="final_score", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictions)
current_student = spark.sql(f"SELECT attendance_rate, homework_score, midterm_score, participation_score, study_time FROM current_students WHERE user_id = {user_id} AND subject = '{subject}'")
if current_student.count() > 0:
student_features = assembler.transform(current_student)
scaled_student = scaler_model.transform(student_features)
prediction = lr_model.transform(scaled_student)
predicted_score = prediction.select("prediction").collect()[0][0]
confidence_level = max(0, 100 - rmse * 10)
result = {'predicted_score': round(predicted_score, 2), 'confidence': round(confidence_level, 2), 'rmse': round(rmse, 2)}
else:
result = {'error': 'Student data not found'}
return JsonResponse(result)
@csrf_exempt
def generate_learning_path(request):
if request.method == 'POST':
data = json.loads(request.body)
user_id = data.get('user_id')
target_subject = data.get('target_subject')
student_profile = spark.sql(f"SELECT * FROM student_profiles WHERE user_id = {user_id}")
learning_history = spark.sql(f"SELECT subject, avg_score, difficulty_level, completion_time FROM learning_records WHERE user_id = {user_id}")
subject_prerequisites = spark.sql(f"SELECT prerequisite, difficulty FROM subject_dependencies WHERE subject = '{target_subject}'")
mastered_subjects = learning_history.filter(col("avg_score") >= 80).select("subject").rdd.map(lambda x: x.subject).collect()
weak_areas = learning_history.filter(col("avg_score") < 70).orderBy("avg_score")
available_resources = spark.sql(f"SELECT resource_id, resource_name, difficulty_level, estimated_time FROM learning_resources WHERE subject = '{target_subject}'")
student_level = student_profile.select("current_level").collect()[0][0] if student_profile.count() > 0 else "beginner"
filtered_resources = available_resources.filter(col("difficulty_level") <= student_level)
recommended_sequence = filtered_resources.orderBy("difficulty_level", "estimated_time")
learning_path = []
total_estimated_time = 0
for resource in recommended_sequence.collect():
path_item = {
'resource_id': resource.resource_id,
'resource_name': resource.resource_name,
'difficulty': resource.difficulty_level,
'estimated_time': resource.estimated_time,
'order': len(learning_path) + 1
}
learning_path.append(path_item)
total_estimated_time += resource.estimated_time
if len(learning_path) >= 10:
break
weak_focus_areas = [{'subject': row.subject, 'priority': 'high'} for row in weak_areas.limit(3).collect()]
result = {
'learning_path': learning_path,
'total_estimated_time': total_estimated_time,
'weak_focus_areas': weak_focus_areas,
'mastered_subjects_count': len(mastered_subjects),
'recommended_daily_time': min(120, total_estimated_time // 30)
}
return JsonResponse(result)
智能学习辅导系统文档展示
💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐