【数据分析】基于大数据的豆瓣电影排行数据可视化分析系统 | 大数据可视化大屏 大数据毕设实战项目 选题推荐 文档指导 运行部署 Hadoop SPark

#【投稿赢 iPhone 17】「我的第一个开源项目」故事征集:用代码换C位出道!#

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

基于大数据的豆瓣电影排行数据可视化分析系统介绍

基于大数据的豆瓣电影排行数据可视化分析系统是一个集数据采集、存储、分析和可视化展示于一体的综合性平台。该系统采用Hadoop分布式文件系统作为底层存储架构,利用Spark强大的内存计算能力对海量豆瓣电影数据进行深度挖掘和实时分析。系统后端基于Spring Boot框架构建,前端采用Vue+ElementUI+Echarts技术栈实现交互界面和数据可视化展示。通过系统的电影总览分析模块,用户可以全面了解电影行业的整体发展趋势;高产演员分析功能帮助识别影视行业的核心人才资源;评分投票关联分析深入探索观众偏好与电影质量之间的内在联系;地区产量分析揭示不同地区电影产业的发展水平;产量趋势分析预测行业未来走向。系统整合了Spark SQL进行复杂查询处理,结合Pandas和NumPy进行数据预处理,最终通过MySQL数据库实现结构化数据的持久化存储,为电影行业研究、投资决策和学术分析提供了强有力的数据支撑平台。

基于大数据的豆瓣电影排行数据可视化分析系统演示视频

【数据分析】基于大数据的豆瓣电影排行数据可视化分析系统 | 大数据可视化大屏 大数据毕设实战项目 选题推荐 文档指导 运行部署 Hadoop SPark

基于大数据的豆瓣电影排行数据可视化分析系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的豆瓣电影排行数据可视化分析系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, desc, asc, when, sum as spark_sum, round as spark_round
from pyspark.sql.types import StructType, StructField, StringType, DoubleType, IntegerType
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
import mysql.connector

# 电影数据大数据处理和分析核心功能
def movie_overview_analysis(request):
    spark = SparkSession.builder.appName("MovieOverviewAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
    df = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("hdfs://localhost:9000/movie_data/douban_movies.csv")
    df.createOrReplaceTempView("movies")
    total_movies = df.count()
    avg_rating = df.select(spark_round(avg("rating"), 2).alias("avg_rating")).collect()[0]["avg_rating"]
    rating_distribution = spark.sql("SELECT CASE WHEN rating >= 9.0 THEN '优秀(9.0+)' WHEN rating >= 8.0 THEN '良好(8.0-8.9)' WHEN rating >= 7.0 THEN '一般(7.0-7.9)' WHEN rating >= 6.0 THEN '较差(6.0-6.9)' ELSE '很差(<6.0)' END as rating_level, COUNT(*) as count FROM movies WHERE rating IS NOT NULL GROUP BY rating_level ORDER BY rating_level").collect()
    genre_stats = spark.sql("SELECT genre, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE genre IS NOT NULL GROUP BY genre ORDER BY movie_count DESC LIMIT 10").collect()
    year_trend = spark.sql("SELECT year, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE year >= 2000 AND year <= 2023 GROUP BY year ORDER BY year").collect()
    top_rated_movies = spark.sql("SELECT title, rating, director, year FROM movies WHERE rating IS NOT NULL ORDER BY rating DESC, vote_count DESC LIMIT 20").collect()
    vote_rating_correlation = spark.sql("SELECT CASE WHEN vote_count >= 100000 THEN '高关注度(10万+)' WHEN vote_count >= 10000 THEN '中等关注度(1-10万)' WHEN vote_count >= 1000 THEN '低关注度(1千-1万)' ELSE '极低关注度(<1千)' END as vote_level, COUNT(*) as count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE vote_count IS NOT NULL GROUP BY vote_level ORDER BY vote_level").collect()
    duration_analysis = spark.sql("SELECT CASE WHEN duration >= 180 THEN '超长片(3小时+)' WHEN duration >= 120 THEN '长片(2-3小时)' WHEN duration >= 90 THEN '标准片(1.5-2小时)' ELSE '短片(<1.5小时)' END as duration_type, COUNT(*) as count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE duration IS NOT NULL GROUP BY duration_type ORDER BY duration_type").collect()
    monthly_distribution = spark.sql("SELECT release_month, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE release_month IS NOT NULL GROUP BY release_month ORDER BY release_month").collect()
    spark.stop()
    result_data = {"total_movies": total_movies, "avg_rating": float(avg_rating), "rating_distribution": [{"level": row["rating_level"], "count": row["count"]} for row in rating_distribution], "genre_stats": [{"genre": row["genre"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"])} for row in genre_stats], "year_trend": [{"year": row["year"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"])} for row in year_trend], "top_movies": [{"title": row["title"], "rating": float(row["rating"]), "director": row["director"], "year": row["year"]} for row in top_rated_movies], "vote_correlation": [{"level": row["vote_level"], "count": row["count"], "avg_rating": float(row["avg_rating"])} for row in vote_rating_correlation], "duration_analysis": [{"type": row["duration_type"], "count": row["count"], "avg_rating": float(row["avg_rating"])} for row in duration_analysis], "monthly_dist": [{"month": row["release_month"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"])} for row in monthly_distribution]}
    return JsonResponse({"code": 200, "message": "电影总览分析完成", "data": result_data})

# 评分投票关联分析核心功能
def rating_vote_correlation_analysis(request):
    spark = SparkSession.builder.appName("RatingVoteCorrelation").config("spark.sql.adaptive.enabled", "true").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").getOrCreate()
    df = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("hdfs://localhost:9000/movie_data/douban_movies.csv")
    df.createOrReplaceTempView("movies")
    vote_ranges = spark.sql("SELECT CASE WHEN vote_count >= 500000 THEN '50万+' WHEN vote_count >= 100000 THEN '10-50万' WHEN vote_count >= 50000 THEN '5-10万' WHEN vote_count >= 10000 THEN '1-5万' WHEN vote_count >= 1000 THEN '1千-1万' ELSE '<1千' END as vote_range, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating, ROUND(MAX(rating), 2) as max_rating, ROUND(MIN(rating), 2) as min_rating FROM movies WHERE vote_count IS NOT NULL AND rating IS NOT NULL GROUP BY vote_range ORDER BY movie_count DESC").collect()
    rating_vote_scatter = spark.sql("SELECT rating, vote_count, title, year, genre FROM movies WHERE rating IS NOT NULL AND vote_count IS NOT NULL AND vote_count > 0 ORDER BY vote_count DESC LIMIT 1000").collect()
    high_vote_low_rating = spark.sql("SELECT title, rating, vote_count, director, year FROM movies WHERE vote_count >= 50000 AND rating < 7.0 ORDER BY vote_count DESC LIMIT 15").collect()
    low_vote_high_rating = spark.sql("SELECT title, rating, vote_count, director, year FROM movies WHERE vote_count < 5000 AND rating >= 8.5 ORDER BY rating DESC LIMIT 15").collect()
    correlation_by_genre = spark.sql("SELECT genre, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating, ROUND(AVG(vote_count), 0) as avg_vote_count, ROUND(MAX(vote_count), 0) as max_vote_count FROM movies WHERE genre IS NOT NULL AND rating IS NOT NULL AND vote_count IS NOT NULL GROUP BY genre HAVING COUNT(*) >= 20 ORDER BY avg_vote_count DESC").collect()
    vote_rating_matrix = spark.sql("SELECT vote_range, rating_range, COUNT(*) as count FROM (SELECT CASE WHEN vote_count >= 100000 THEN '高投票' WHEN vote_count >= 10000 THEN '中投票' ELSE '低投票' END as vote_range, CASE WHEN rating >= 8.0 THEN '高评分' WHEN rating >= 7.0 THEN '中评分' ELSE '低评分' END as rating_range FROM movies WHERE vote_count IS NOT NULL AND rating IS NOT NULL) GROUP BY vote_range, rating_range ORDER BY vote_range, rating_range").collect()
    yearly_correlation = spark.sql("SELECT year, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating, ROUND(AVG(vote_count), 0) as avg_vote_count, ROUND(CORR(rating, LOG(vote_count + 1)), 3) as correlation_coeff FROM movies WHERE year >= 2000 AND year <= 2023 AND rating IS NOT NULL AND vote_count IS NOT NULL GROUP BY year ORDER BY year").collect()
    outlier_analysis = spark.sql("SELECT title, rating, vote_count, ABS(rating - avg_rating_for_vote_range) as rating_deviation FROM (SELECT title, rating, vote_count, AVG(rating) OVER (PARTITION BY CASE WHEN vote_count >= 100000 THEN '高投票' WHEN vote_count >= 10000 THEN '中投票' ELSE '低投票' END) as avg_rating_for_vote_range FROM movies WHERE rating IS NOT NULL AND vote_count IS NOT NULL) WHERE ABS(rating - avg_rating_for_vote_range) > 1.5 ORDER BY rating_deviation DESC LIMIT 20").collect()
    spark.stop()
    analysis_result = {"vote_distribution": [{"range": row["vote_range"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"]), "max_rating": float(row["max_rating"]), "min_rating": float(row["min_rating"])} for row in vote_ranges], "scatter_data": [{"rating": float(row["rating"]), "vote_count": row["vote_count"], "title": row["title"], "year": row["year"], "genre": row["genre"]} for row in rating_vote_scatter], "high_vote_low_rating": [{"title": row["title"], "rating": float(row["rating"]), "vote_count": row["vote_count"], "director": row["director"], "year": row["year"]} for row in high_vote_low_rating], "low_vote_high_rating": [{"title": row["title"], "rating": float(row["rating"]), "vote_count": row["vote_count"], "director": row["director"], "year": row["year"]} for row in low_vote_high_rating], "genre_correlation": [{"genre": row["genre"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"]), "avg_vote": int(row["avg_vote_count"]), "max_vote": int(row["max_vote_count"])} for row in correlation_by_genre], "rating_vote_matrix": [{"vote_range": row["vote_range"], "rating_range": row["rating_range"], "count": row["count"]} for row in vote_rating_matrix], "yearly_trend": [{"year": row["year"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"]), "avg_vote": int(row["avg_vote_count"]), "correlation": float(row["correlation_coeff"]) if row["correlation_coeff"] else 0} for row in yearly_correlation], "outliers": [{"title": row["title"], "rating": float(row["rating"]), "vote_count": row["vote_count"], "deviation": float(row["rating_deviation"])} for row in outlier_analysis]}
    return JsonResponse({"code": 200, "message": "评分投票关联分析完成", "data": analysis_result})

# 地区产量分析核心功能
def region_production_analysis(request):
    spark = SparkSession.builder.appName("RegionProductionAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
    df = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("hdfs://localhost:9000/movie_data/douban_movies.csv")
    df.createOrReplaceTempView("movies")
    region_stats = spark.sql("SELECT country as region, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating, ROUND(AVG(vote_count), 0) as avg_vote_count, ROUND(MAX(rating), 2) as max_rating FROM movies WHERE country IS NOT NULL AND country != '' GROUP BY country ORDER BY movie_count DESC LIMIT 20").collect()
    region_genre_analysis = spark.sql("SELECT country, genre, COUNT(*) as count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE country IS NOT NULL AND genre IS NOT NULL GROUP BY country, genre HAVING COUNT(*) >= 5 ORDER BY country, count DESC").collect()
    region_year_trend = spark.sql("SELECT country, year, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE country IS NOT NULL AND year >= 2010 AND year <= 2023 GROUP BY country, year HAVING COUNT(*) >= 3 ORDER BY country, year").collect()
    top_regions_by_quality = spark.sql("SELECT country, COUNT(*) as total_movies, SUM(CASE WHEN rating >= 8.0 THEN 1 ELSE 0 END) as high_rating_movies, ROUND(SUM(CASE WHEN rating >= 8.0 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) as high_rating_percentage, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE country IS NOT NULL GROUP BY country HAVING COUNT(*) >= 20 ORDER BY high_rating_percentage DESC LIMIT 15").collect()
    region_budget_analysis = spark.sql("SELECT country, COUNT(*) as movie_count, ROUND(AVG(CASE WHEN duration >= 120 THEN 1 ELSE 0 END) * 100, 2) as long_movie_percentage, ROUND(AVG(vote_count), 0) as avg_popularity FROM movies WHERE country IS NOT NULL GROUP BY country HAVING COUNT(*) >= 10 ORDER BY avg_popularity DESC LIMIT 15").collect()
    cross_region_collaboration = spark.sql("SELECT country, COUNT(DISTINCT director) as unique_directors, COUNT(*) as total_movies, ROUND(COUNT(DISTINCT director) * 1.0 / COUNT(*), 3) as director_diversity_ratio FROM movies WHERE country IS NOT NULL AND director IS NOT NULL GROUP BY country HAVING COUNT(*) >= 15 ORDER BY director_diversity_ratio DESC LIMIT 12").collect()
    region_market_performance = spark.sql("SELECT country, COUNT(*) as movie_count, ROUND(AVG(vote_count), 0) as avg_vote_count, SUM(vote_count) as total_votes, ROUND(AVG(rating), 2) as avg_rating, ROUND(MAX(vote_count), 0) as max_vote_count FROM movies WHERE country IS NOT NULL AND vote_count IS NOT NULL GROUP BY country HAVING COUNT(*) >= 10 ORDER BY total_votes DESC LIMIT 15").collect()
    region_rating_distribution = spark.sql("SELECT country, SUM(CASE WHEN rating >= 9.0 THEN 1 ELSE 0 END) as excellent_count, SUM(CASE WHEN rating >= 8.0 AND rating < 9.0 THEN 1 ELSE 0 END) as good_count, SUM(CASE WHEN rating >= 7.0 AND rating < 8.0 THEN 1 ELSE 0 END) as average_count, SUM(CASE WHEN rating < 7.0 THEN 1 ELSE 0 END) as poor_count FROM movies WHERE country IS NOT NULL AND rating IS NOT NULL GROUP BY country HAVING COUNT(*) >= 20 ORDER BY excellent_count DESC LIMIT 10").collect()
    emerging_regions = spark.sql("SELECT country, year, COUNT(*) as movie_count, ROUND(AVG(rating), 2) as avg_rating FROM movies WHERE country IS NOT NULL AND year >= 2018 GROUP BY country, year HAVING COUNT(*) >= 2 ORDER BY year DESC, movie_count DESC").collect()
    spark.stop()
    region_data = {"production_stats": [{"region": row["region"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"]), "avg_vote": int(row["avg_vote_count"]), "max_rating": float(row["max_rating"])} for row in region_stats], "genre_distribution": [{"country": row["country"], "genre": row["genre"], "count": row["count"], "avg_rating": float(row["avg_rating"])} for row in region_genre_analysis], "yearly_trends": [{"country": row["country"], "year": row["year"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"])} for row in region_year_trend], "quality_rankings": [{"country": row["country"], "total": row["total_movies"], "high_rating": row["high_rating_movies"], "percentage": float(row["high_rating_percentage"]), "avg_rating": float(row["avg_rating"])} for row in top_regions_by_quality], "market_analysis": [{"country": row["country"], "count": row["movie_count"], "long_movie_pct": float(row["long_movie_percentage"]), "popularity": int(row["avg_popularity"])} for row in region_budget_analysis], "collaboration_index": [{"country": row["country"], "directors": row["unique_directors"], "movies": row["total_movies"], "diversity": float(row["director_diversity_ratio"])} for row in cross_region_collaboration], "market_performance": [{"country": row["country"], "count": row["movie_count"], "avg_vote": int(row["avg_vote_count"]), "total_votes": row["total_votes"], "avg_rating": float(row["avg_rating"]), "max_vote": int(row["max_vote_count"])} for row in region_market_performance], "rating_distribution": [{"country": row["country"], "excellent": row["excellent_count"], "good": row["good_count"], "average": row["average_count"], "poor": row["poor_count"]} for row in region_rating_distribution], "emerging_markets": [{"country": row["country"], "year": row["year"], "count": row["movie_count"], "avg_rating": float(row["avg_rating"])} for row in emerging_regions]}
    return JsonResponse({"code": 200, "message": "地区产量分析完成", "data": region_data})

基于大数据的豆瓣电影排行数据可视化分析系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值