前言
💖💖作者:计算机程序员小杨
💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💕💕文末获取源码联系 计算机程序员小杨
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
计算机毕业设计选题
💜💜
一.开发工具简介
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL
二.系统内容简介
基于大数据的大学生就业因素数据分析系统是一个集数据采集、存储、分析和可视化于一体的综合性平台。系统采用Hadoop分布式文件系统作为数据存储基础,结合Spark大数据处理框架实现海量就业数据的高效分析。通过Python和Java双语言支持,系统提供了灵活的开发选择,后端采用Django或Spring Boot框架构建RESTful API接口,前端运用Vue.js配合ElementUI组件库和ECharts图表库打造直观的用户交互界面。系统核心功能涵盖就业因素信息管理、大屏可视化展示、学生学业成就分析、就业多维因素分析、学生实践技能分析以及学生综合画像分析等模块。通过Spark SQL进行复杂数据查询和统计分析,结合Pandas和NumPy进行数据预处理和科学计算,系统能够从多个维度深入挖掘影响大学生就业的关键因素,为教育管理部门和学生个人提供数据驱动的决策支持。
三.系统功能演示
大数据毕业设计推荐:基于Hadoop+Spark的大学生就业因素数据分析系统实战
四.系统界面展示
五.系统源码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, sum, desc, asc, when, isnan, isnull
from pyspark.ml.feature import VectorAssembler, StandardScaler
from pyspark.ml.clustering import KMeans
import pandas as pd
import numpy as np
spark = SparkSession.builder.appName("StudentEmploymentAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
def student_academic_achievement_analysis(student_data_path):
df = spark.read.option("header", "true").option("inferSchema", "true").csv(student_data_path)
df = df.filter(~(col("gpa").isNull() | col("major_score").isNull() | col("english_score").isNull()))
academic_stats = df.groupBy("major", "grade").agg(avg("gpa").alias("avg_gpa"), avg("major_score").alias("avg_major_score"), avg("english_score").alias("avg_english_score"), count("student_id").alias("student_count"))
excellent_students = df.filter((col("gpa") >= 3.5) & (col("major_score") >= 85) & (col("english_score") >= 80))
excellent_stats = excellent_students.groupBy("major").agg(count("student_id").alias("excellent_count"), avg("gpa").alias("excellent_avg_gpa"))
grade_distribution = df.select("gpa", when((col("gpa") >= 3.5), "优秀").when((col("gpa") >= 3.0), "良好").when((col("gpa") >= 2.5), "中等").otherwise("需改进").alias("grade_level")).groupBy("grade_level").count().orderBy(desc("count"))
correlation_analysis = df.select("gpa", "major_score", "english_score", "practice_hours").toPandas()
correlation_matrix = correlation_analysis.corr()
major_ranking = df.groupBy("major").agg(avg("gpa").alias("avg_gpa"), avg("major_score").alias("avg_major_score")).orderBy(desc("avg_gpa"))
trend_analysis = df.groupBy("semester").agg(avg("gpa").alias("semester_avg_gpa"), avg("major_score").alias("semester_avg_major")).orderBy("semester")
result_dict = {"academic_stats": academic_stats.collect(), "excellent_stats": excellent_stats.collect(), "grade_distribution": grade_distribution.collect(), "correlation_matrix": correlation_matrix.to_dict(), "major_ranking": major_ranking.collect(), "trend_analysis": trend_analysis.collect()}
academic_stats.write.mode("overwrite").option("header", "true").csv("hdfs://localhost:9000/analysis_results/academic_analysis")
return result_dict
def employment_multidimensional_factor_analysis(employment_data_path, student_info_path):
employment_df = spark.read.option("header", "true").option("inferSchema", "true").csv(employment_data_path)
student_df = spark.read.option("header", "true").option("inferSchema", "true").csv(student_info_path)
combined_df = employment_df.join(student_df, "student_id", "inner")
combined_df = combined_df.filter(~(col("salary").isNull() | col("gpa").isNull() | col("internship_months").isNull()))
salary_analysis = combined_df.groupBy("major", "employment_status").agg(avg("salary").alias("avg_salary"), count("student_id").alias("count"), avg("gpa").alias("avg_gpa_employed"))
skill_impact = combined_df.groupBy("technical_skills_level").agg(avg("salary").alias("avg_salary_by_skill"), count("student_id").alias("skill_count"), avg("interview_success_rate").alias("avg_interview_rate"))
internship_correlation = combined_df.groupBy("internship_months").agg(avg("salary").alias("avg_salary_by_internship"), avg("employment_time_days").alias("avg_employment_time"), count("student_id").alias("internship_count"))
geographic_analysis = combined_df.groupBy("employment_city", "major").agg(avg("salary").alias("avg_city_salary"), count("student_id").alias("city_employment_count"))
company_type_analysis = combined_df.groupBy("company_type", "company_size").agg(avg("salary").alias("avg_company_salary"), count("student_id").alias("company_count"), avg("job_satisfaction").alias("avg_satisfaction"))
education_impact = combined_df.groupBy("education_level").agg(avg("salary").alias("avg_edu_salary"), avg("employment_time_days").alias("avg_edu_employment_time"), count("student_id").alias("edu_count"))
multifactor_correlation = combined_df.select("salary", "gpa", "internship_months", "technical_skills_level", "english_level", "project_count").toPandas()
factor_correlation_matrix = multifactor_correlation.corr()
employment_rate_by_major = combined_df.groupBy("major").agg((count(when(col("employment_status") == "已就业", 1)) / count("student_id") * 100).alias("employment_rate")).orderBy(desc("employment_rate"))
result_analysis = {"salary_analysis": salary_analysis.collect(), "skill_impact": skill_impact.collect(), "internship_correlation": internship_correlation.collect(), "geographic_analysis": geographic_analysis.collect(), "company_analysis": company_type_analysis.collect(), "education_impact": education_impact.collect(), "factor_correlation": factor_correlation_matrix.to_dict(), "employment_rate": employment_rate_by_major.collect()}
salary_analysis.write.mode("overwrite").option("header", "true").csv("hdfs://localhost:9000/analysis_results/employment_multifactor")
return result_analysis
def student_comprehensive_profile_analysis(student_data_path, activity_data_path, skill_data_path):
student_df = spark.read.option("header", "true").option("inferSchema", "true").csv(student_data_path)
activity_df = spark.read.option("header", "true").option("inferSchema", "true").csv(activity_data_path)
skill_df = spark.read.option("header", "true").option("inferSchema", "true").csv(skill_data_path)
student_activity = student_df.join(activity_df, "student_id", "left").join(skill_df, "student_id", "left")
student_activity = student_activity.fillna({"activity_score": 0, "leadership_score": 0, "technical_skill_score": 0, "soft_skill_score": 0})
comprehensive_score = student_activity.withColumn("comprehensive_score", (col("gpa") * 0.3 + col("technical_skill_score") * 0.25 + col("activity_score") * 0.2 + col("leadership_score") * 0.15 + col("soft_skill_score") * 0.1))
feature_columns = ["gpa", "technical_skill_score", "activity_score", "leadership_score", "soft_skill_score", "internship_count", "project_count"]
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
feature_data = assembler.transform(comprehensive_score)
scaler = StandardScaler(inputCol="features", outputCol="scaled_features")
scaler_model = scaler.fit(feature_data)
scaled_data = scaler_model.transform(feature_data)
kmeans = KMeans(featuresCol="scaled_features", predictionCol="cluster", k=5, seed=42)
kmeans_model = kmeans.fit(scaled_data)
clustered_data = kmeans_model.transform(scaled_data)
cluster_analysis = clustered_data.groupBy("cluster").agg(avg("comprehensive_score").alias("avg_comprehensive_score"), avg("gpa").alias("avg_cluster_gpa"), avg("technical_skill_score").alias("avg_tech_skill"), count("student_id").alias("cluster_size"))
student_ranking = comprehensive_score.select("student_id", "student_name", "major", "comprehensive_score").orderBy(desc("comprehensive_score"))
strength_weakness_analysis = comprehensive_score.select("student_id", "gpa", "technical_skill_score", "activity_score", "leadership_score", "soft_skill_score").rdd.map(lambda row: (row.student_id, {"strengths": [col for col in ["gpa", "technical_skill_score", "activity_score", "leadership_score", "soft_skill_score"] if getattr(row, col) > 0.7], "weaknesses": [col for col in ["gpa", "technical_skill_score", "activity_score", "leadership_score", "soft_skill_score"] if getattr(row, col) < 0.5]})).collect()
major_profile_comparison = comprehensive_score.groupBy("major").agg(avg("comprehensive_score").alias("major_avg_score"), avg("gpa").alias("major_avg_gpa"), avg("technical_skill_score").alias("major_avg_tech"), avg("activity_score").alias("major_avg_activity"))
profile_result = {"cluster_analysis": cluster_analysis.collect(), "student_ranking": student_ranking.limit(100).collect(), "strength_weakness": strength_weakness_analysis, "major_comparison": major_profile_comparison.collect(), "comprehensive_stats": comprehensive_score.describe().collect()}
student_ranking.write.mode("overwrite").option("header", "true").csv("hdfs://localhost:9000/analysis_results/student_profiles")
return profile_result
六.系统文档展示
结束
💛💛想说的话:感谢大家的关注与支持!
💕💕文末获取源码联系 计算机程序员小杨
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
计算机毕业设计选题
💜💜