力扣62:不同路径

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

img

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100

  • 题目数据保证答案小于等于 2 * 109

思路

一个简单的动态规划题目,只需将可能来的的方格的状态转移到现在的方块即可

题解

func uniquePaths(m int, n int) int {
    dp := make([][]int,m)
    for k, _ := range dp{
        dp[k] = make([]int, n)
    }
    for i := 0; i < m; i++{
        for j := 0; j <n ; j++{
            if i == 0 && j >0{
                dp[i][j] = dp[i][j-1]
            }else if j == 0 && i >0{
                dp[i][j] = dp[i-1][j]
            }else if i != 0 && j != 0{
                dp[i][j] = dp[i][j-1] + dp[i-1][j]
            }else{
                dp[i][j] = 1
            }   
        }
    }
    return dp[m-1][n-1]
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值