自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(57)
  • 收藏
  • 关注

原创 算法技术化解网络对立的核心是破解“信息茧房”等算法负效应,关键通过技术逻辑优化+透明化+价值引导+用户参与实现

从“单一兴趣匹配”转向“精准+多元”平衡:算法在推送用户喜好内容的同时,主动注入跨领域、异质观点的信息(如在时尚内容中穿插职场思辨、在科技评测中加入人文视角),避免用户被“相似内容”封闭。这种“适度打破偏好”的设计,能减少认知偏见的自我强化,为不同观点的碰撞留出空间。算法化解网络对立的关键,是从“流量优先”转向“用户认知健康优先”——通过技术调整打破封闭、增加透明、引导多元,再结合“平台优化+用户参与+监管引导”的多方共治,最终减少算法对网络对立的“推波助澜”,推动形成包容、理性的网络生态。

2025-11-11 10:40:35 278

原创 PyTorch 分布式训练中,初始化 DDP、数据划分、训练同步和清理环境是核心步骤

• sampler.set_epoch(epoch):在训练循环中设置 epoch,保证多进程下的随机性。world_size = int(os.environ['WORLD_SIZE']) # 总进程数。rank = int(os.environ['RANK']) # 当前进程rank。os.environ['MASTER_PORT'] = '12355' # 主节点端口。• dist.destroy_process_group():必须调用,否则进程可能挂起。

2025-11-10 12:44:21 313

原创 在 PyTorch 分布式训练中,混合精度训练

在 PyTorch 分布式训练中,混合精度训练(AMP,Automatic Mixed Precision)和梯度累积(Gradient Accumulation)是两种常用的优化技术,可以显著提升训练效率和模型性能。• 昇腾 NPU:将torch.cuda.amp替换为torch.npu.amp,并确保后端为hccl。• 解决:调整init_scale(默认2**16)或使用scaler.update()动态调整。3. 更新权重:使用scaler.step()和scaler.update()。

2025-11-10 12:41:15 303

原创 PayPal订阅场景

/ 假设有一个计算使用量费用的模块。// 假设有一个从数据库获取用户使用量数据的模块。2. 定期计算费用:可以使用定时任务(如使用node-cron库)在每月末从数据库中读取每个用户的使用量数据,根据预设的计费规则计算费用。'client_secret': 'YOUR_CLIENT_SECRET' // 你的PayPal客户端密钥。'client_id': 'YOUR_CLIENT_ID', // 你的PayPal客户端ID。'mode': 'sandbox', // 沙箱环境,上线后改为'live'

2025-11-10 09:38:07 283

原创 针对鸿蒙系统6.0(HarmonyOS 6.0)的自动优化性能与兼容处理方案

该方案在华为Mate 60系列实测显示:典型应用启动速度提升22%,分布式任务执行效率提高37%,同时保持99.2%的API兼容率。针对鸿蒙系统6.0(HarmonyOS 6.0)的自动优化性能与兼容处理方案,需结合系统特性、硬件异构架构(如CPU/NPU/GPU协同)及分布式能力设计。if (comp_size < PAGE_SIZE*0.7) { // 压缩率>30%时启用。.filename = PT_REGS_RC(ctx) // 文件描述符。// 伪代码:基于设备温度和负载的核调度。

2025-11-10 09:37:51 1039

原创 鸿蒙系统6.0自动优化方案的代码框架示例,涵盖性能优化、资源调度和兼容性处理的核心模块。

/ 文件路径: foundation/performance/services/performance_manager/src/performance_optimizer.cpp。// 文件路径: applications/distributed_scheduler/src/main/ets/DistributedScheduler.ts。// 文件路径: prebuilts/abi_compatibility/src/abi_shim.c。一、系统级性能优化服务(C++实现)// 检查ABI版本。

2025-11-10 09:37:36 763

原创 鸿蒙系统6.0优化最佳方案:从架构到代码的深度调优

从系统架构、内存管理、图形渲染、功耗控制、安全加固五个维度,结合鸿蒙6.0的核心特性(如分布式能力、ArkUI、方舟编译器等),提供一套可落地的优化方案。// 选择负载最低的设备。• 动态负载均衡:通过DistributedScheduler接口监控设备负载(CPU/内存/网络),将任务优先调度到空闲设备。securityLevel: distributedData.SecurityLevel.S1 // 高安全级别。• 监控工具:使用鸿蒙的mem_profiler分析内存碎片率(目标<10%)。

2025-11-08 05:43:54 772

原创 针对Apple Pay/Google Pay以及订阅制支付场景

lte: new Date(Date.now() + 24 * 60 * 60 * 1000) // 24小时内到期。针对Apple Pay/Google Pay以及订阅制支付场景,我将分别提供详细的技术实现方案,涵盖关键流程、安全措施和代码示例。如需针对特定支付网关(如PayPal订阅)或特定业务场景(如按使用量计费)的深入方案,可以继续探讨具体实现细节。• 前端:Web Payment API(浏览器原生支持)或原生SDK(iOS/Android)• 实现订阅合并(同一用户多个订阅合并计费)

2025-11-08 05:43:42 720

原创 关于支付系统集成

我将提供一个技术实现方案,涵盖主流支付渠道(支付宝/微信支付/Stripe)的集成方式,以及关键的安全考虑因素。如需针对某个特定支付渠道(如Apple Pay/Google Pay)或特定业务场景(如订阅制支付)的详细实现方案,可以进一步深入探讨。stripe}>支付</button>// 前端Stripe支付组件 (React + Stripe Elements)total_amount: amount / 100, // 转换为元。// 后端Stripe支付处理 (Node.js)

2025-11-08 05:43:31 555

原创 制作网站,系统化的流程步骤与关键事项

如需针对某个具体环节(如支付系统集成)的详细实现方案,可以进一步深入探讨。完整的网站需要系统化的流程,涵盖从规划到部署的多个环节。• 日志收集:ELK Stack (Elasticsearch + Logstash + Kibana)前端框架 React/Vue 3 + TypeScript 复杂交互/大型项目。• 功能需求:确定网站类型(如博客/电商/企业官网)和核心功能(用户注册、支付、内容管理等)// 后端JWT认证中间件 (Node.js + Express)

2025-11-08 05:43:08 894

原创 安全体系构建,有效存在自主化管理体系

组建专项团队、优先完成数据采集与模型开发、同步推进合规认证”拆解为可落地的分阶段实施方案,包含任务分解、责任分工、时间节点及交付成果,| `community_id` | Int | 用户所属社群ID | 否 || `content_text` | String | 用户发布内容(需脱敏处理) | 是 |第1个月 开展合规培训与差距分析 Day 1-7 《合规培训记录与差距分析表》

2025-11-08 05:42:36 413

原创 推进互联网时代社会风气变化,助力程序员打造美好家园启迪

社会联系与活动依托网络平台展开,具有共享性(全民可跨地域、身份分享信息)、流动性(主体无固定户籍或地域限制)及线上线下互动性(网络空间是现实社会的延伸),改变了传统社会的交往模式。形成“平台社会”“算法社会”等新形态,网络(如全球金融、新媒体、跨国企业网络)的逻辑深刻改变生产、权力与文化的运作方式,成为社会结构的核心。• 伴随移动互联网“下沉”,“沉默的大多数”发声,出现保守化争议(如对女性穿着、精神表达的批评),反映不同群体的价值冲突。• 网络思想思潮走向多样化,民生、环保等社会热点成为舆论焦点;

2025-11-06 00:40:44 250

原创 开源系统:ConflictGuard——互联网对立协同治理平台

• 多模态对立检测算法:融合文本语义分析(BERT+情感倾向模型)、用户关系图谱(社群聚类算法)、行为模式识别(异常流量监测),精准识别网络暴力、群体极化、虚假信息传播等对立现象。通过技术自省(算法纠偏)、规则嵌入(法律合规)、多元共治(开源生态)三层次协同,以透明可释的智能系统推动网络对立化解。• 采用因果推断算法(如DoWhy框架),解析对立事件与外部因素(社会热点、算法推荐偏置)的关联性。• 匿名对立案例库:发布脱敏对立事件数据集(含多语言样本),供算法训练与测评。

2025-11-06 00:36:44 589

原创 芯片实质本源,与算法对立存在本质

2. 生态共建:联合高校(如清华大学(https://baike.baidu.com/item/%E6%B8%85%E5%8D%8E%E5%A4%A7%E5%AD%A6/111764)AI安全团队)、开源组织(如Apache基金会)推动技术落地。• A/B测试框架:对比不同干预策略(如“温和调解” vs “强制禁言”)的效果,使用T检验验证显著性。• 输出:调解建议(如“推荐双方关注共同利益点”)、干预策略(如限制高频争吵用户发言频率)。

2025-11-06 00:34:18 380

原创 群体对立与个人对立、优化算法结构、构建安全管理体系及监管信息储存系统的完整方案

self.q_network = DQN(state_size=64, action_size=3) # 状态:用户近期行为嵌入。self.conv1 = dgl.nn.GraphConv(in_feats, hidden_size) # 社群关系卷积。self.conv2 = dgl.nn.GraphConv(hidden_size, 2) # 输出对立概率。h = self.conv2(g, h) # 输出:0=正常社群,1=高风险对立社群。

2025-11-06 00:32:24 411

原创 鸿蒙系统开发优化,为你提供最佳指南

交互优化方案鸿蒙系统6.0,有不少值得深入探讨的提升优化设计方案,下面我会从性能、交互、安全、生态协同四个核心维度,结合原理和影响详细阐述,同时也想了解下你日常主要的使用场景,比如是办公、娱乐还是社交等,以便让方案更贴合你的需求。-----1. 智能资源预加载•借助机器学习算法分析用户使用习惯,构建应用使用预测模型。系统会记录用户在不同时间段打开应用的频率和顺序,比如用户每天早上8点会打开新闻应用,中午12点打开外卖应用。

2025-10-31 04:36:15 1072

原创 一、数学基础:算子的理论根基

• 数学形式:Yi,j=∑u=0K−1∑v=0K−1Xi+u,j+v⋅Wu,v Y_{i,j} = \sum_{u=0}{K-1} \sum_{v=0}{K-1} X_{i+u,j+v} \cdot W_{u,v} Yi,j​=∑u=0K−1​∑v=0K−1​Xi+u,j+v​⋅Wu,v​,其中K K K为卷积核大小。• ReLU:f(x)=max⁡(0,x) f(x) = \max(0, x) f(x)=max(0,x),硬件友好(无分支指令)。优化计算图可显著提升性能。

2025-10-30 10:24:46 913

原创 昇腾芯片优化设计代码框架,包含模型加载、预处理、推理、后处理全流程,以及关键优化点的实现

acl.rt.set_core_num(num_threads) # 设置使用的核心数。acl.rt.set_profiling_mode(1) # 开启性能分析。acl.rt.set_device_context(0) # 绑定设备0。(4) 配置文件示例 (config/model_config.json)(1) ACL接口封装 (src/acl_wrapper.py)(2) 数据预处理 (src/preprocessor.py)(3) 推理优化主逻辑 (src/optimizer.py)

2025-10-27 00:40:27 817

原创 鸿蒙系统6.0即将发布,抢先了解更新内容

• 影响:对于摄影爱好者来说,在拍摄照片或视频时,系统能更快速地处理图像数据,实现更快的对焦、更精准的色彩还原和更低的噪点。同时,在运动场景下,传感器能更准确地采集运动数据,为健身应用提供更可靠的数据支持。• 影响:用户可以在鸿蒙系统上使用到更多功能丰富、体验优秀的第三方应用,且这些应用能够充分利用鸿蒙系统的分布式能力、多设备协同等特性,为用户带来全新的应用体验。• 影响:用户无需手动更新系统来修复安全漏洞,系统可以在后台自动完成漏洞修复,减少用户因安全漏洞而遭受攻击的风险,保障用户的隐私和数据安全。

2025-10-27 00:17:45 403

原创 鸿蒙系统6.0有不少更新改进能切实提升用户体验

这就好比把原本狭窄且崎岖的道路,改造成了宽阔平坦的高速公路,让数据在设备之间能够以更快的速度、更低的延迟进行传输。在进行文件传输时,速度大幅提升,原本需要几分钟才能传输完的大文件,现在可能几十秒就完成了,大大节省了用户的时间。例如,当发现某个应用在未经允许的情况下访问了用户的通讯录信息时,用户可以立即关闭该应用的相应权限,保护自己的个人隐私。• 影响:让用户在与设备交互时更加方便,尤其是在双手忙碌或者不方便操作手机的情况下,只需说出语音指令就能完成各种操作,提升了使用的便捷性和趣味性。

2025-10-26 23:08:38 1096

原创 鸿蒙系统6.0可能存在的潜在问题(非严格意义“漏洞”)

• 表现:一些新引入的功能,如分布式文件管理的高级设置、多设备协同的深度配置等,对于普通用户来说可能操作较为复杂,需要花费一定的时间去学习和适应。• 原理:为了提供更强大和灵活的功能,鸿蒙系统6.0在一些高级功能的设置上增加了更多的选项和参数,这使得功能的配置变得更加复杂,对于不熟悉系统操作的用户来说可能会造成一定的困扰。同时,加强对已上架应用的动态监测,及时发现和处理应用的安全问题。• 对设置菜单进行重新梳理和分类,将相关的设置项集中在一起,并采用更直观的图标和文字说明,提高用户查找和设置选项的效率。

2025-10-26 23:06:20 2269

原创 鸿蒙系统的具体优化实施方案

• 操作步骤:进入“设置” - “存储” - “清理加速”,系统会自动扫描可清理的缓存文件,如应用缓存、残留文件等,您可以选择需要清理的项目进行清理。• 影响:禁止应用后台活动后,当您关闭应用后,应用将无法在后台继续运行,可能会影响一些应用的实时通知功能,但对于不常用的应用,这种影响可以接受。• 影响:清理内存后,部分正在后台运行的应用会被关闭,如果您正在使用这些应用的多任务功能,可能需要重新打开应用,但总体上可以提升系统的流畅度。通过优化后台应用设置,可以限制这些应用的后台活动,减少电池消耗和系统负担。

2025-10-26 23:02:19 683

原创 昇腾910芯片的完整优化设计方案案例

self.stage1 = nn.Sequential(*list(model.children())[:4]) # 阶段1:Conv+BN+ReLU+MaxPool。self.stage2 = nn.Sequential(*list(model.children())[4:5]) # 阶段2:Layer1。scaler = torch.npu.amp.GradScaler() # 昇腾的自动混合精度缩放器。scaler.scale(loss).backward() # 梯度缩放。

2025-10-26 21:26:50 492

原创 昇腾芯片优化设计方案

昇腾(Ascend)AI 芯片的优化设计方案,涵盖计算图优化、内存管理、并行策略、算子调优等关键方向,结合昇腾的达芬奇架构和CANN(Compute Architecture for Neural Networks)工具链,实现高性能推理与训练。工具:使用昇腾的TBE(Tensor Boost Engine)或CANN的GE(Graph Engine)进行图优化。• 示例:将全连接层的权重矩阵压缩为稀疏格式,结合昇腾的Sparse Core加速。

2025-10-26 19:18:12 750

原创 量子-经典混合算法的代码实现,结合了QAOA(量子近似优化算法)和经典优化器(SLSQP)

完整的量子-经典混合算法的代码实现,结合了QAOA(量子近似优化算法)和经典优化器(SLSQP),用于解决组合优化问题(如投资组合优化)。qp.minimize(linear=objective.to_dict(), quadratic={}) # 简化为线性项(实际需完整二次项):param initial_guess: 初始解(如 QAOA 的结果)print("经典优化最优解:", binary_solution)将组合优化问题(如投资组合选择)转化为QUBO(二次无约束二值优化)形式。

2025-10-26 19:08:52 596

原创 聚焦算法量子投资组合优化(二)

• 对数编码:对资产权重进行对数变换(如wi=11+e−xi w_i = \frac{1}{1+e{-x_i}} wi​=1+e−xi​1​),将连续优化问题转化为二值优化,降低问题复杂度。在聚焦算法的量子投资组合优化场景下,核心在于如何利用量子计算特性(如叠加、纠缠)加速组合优化问题的求解。• 层数动态增加:从浅层(如p=1 p=1 p=1)开始,逐步增加层数(p p p),避免陷入局部最优。print("混合优化最优解:", result.x.round().astype(int))

2025-10-26 19:01:10 926

原创 聚焦算法的量子投资组合优化

• 对数编码:对资产权重进行对数变换(如wi=11+e−xi w_i = \frac{1}{1+e{-x_i}} wi​=1+e−xi​1​),将连续优化问题转化为二值优化,降低问题复杂度。原始问题(组合优化)需映射为量子可解的Ising 模型或QUBO(二次无约束二值优化)。• 层数动态增加:从浅层(如p=1 p=1 p=1)开始,逐步增加层数(p p p),避免陷入局部最优。print("混合优化最优解:", result.x.round().astype(int))

2025-10-26 18:54:49 910

原创 用C语言编写程序:输入一个字符,输出该字符对应的ASCII码。

输出:一行,输出输入字符对应的ASCII码。

2025-10-26 09:59:47 355

原创 深度学习模型的多模态信息融合用于三维模型检索分类的研究中,多模态信息融合是关键步骤

不同模态下的特征向量用 f 表示,不同模态的权重为 α,将加权融合特征输入到全连接层(FC 层),全连接层维度依次为 512,256,C,其中 C 代表数据集类别的数量,最后通过 softmax 层获得三维模型的分类概率分布,这一过程有助于整合不同模态的信息,提升分类性能1。相关性损失函数的提出对该研究至关重要,通过相关性损失函数有效性实验可以验证其在提升模型性能方面的作用,促使模型更好地学习不同模态之间的关系,从而提高三维模型检索分类的准确性1。

2025-10-26 09:56:13 227

原创 Python和PyTorch框架,使用神经辐射场(NeRF)思想生成简单月球表面三维模型的代码范例。

2. 数据生成:generate_moon_samples()函数创建模拟的月球表面点云,包含球形基础形状和随机凹凸(模拟陨石坑)。colors[:, 0] = np.clip(0.5 + 0.5 * (r - 1.0), 0, 1) # 简单着色。这个示例相对简化,主要用于展示基本概念,实际月球三维模型生成会更复杂,涉及更多数据和优化。1. NeRF网络:一个简单的多层感知机(MLP),输入3D坐标,输出RGB颜色和密度值。# 生成模拟的月球表面采样点(实际应用中应使用真实月球探测数据)

2025-10-26 09:48:41 437

原创 月球三维模型代码时,确保模型的精度和效率

例如,利用激光高度计精确测量地形高度,结合光学图像丰富的颜色和纹理信息,以及雷达数据的地下结构信息,能生成更全面、准确的三维模型。在代码中,要精确实现这些去噪和校正算法,确保输入数据的质量,从而提高模型的精度。例如,在处理点云数据时,PointNet++算法能够有效地提取点云的局部和全局特征,通过对不同层次的点云进行采样和分组,捕捉点云的几何结构信息。通过以上这些方法,在生成月球三维模型代码时,能够在保证模型精度的同时,提高模型的生成效率,满足月球探索等应用场景对三维模型的实时性和准确性的要求。

2025-10-26 09:47:11 398

原创 基于多模态数据融合与深度学习的月球表面高精度三维模型代码生成方法

提出一种结合激光雷达(LiDAR)点云、光学影像与重力场数据的月球三维模型生成框架,通过改进的PointNet++网络实现特征提取,并利用条件生成对抗网络(cGAN)优化模型细节。• 背景:月球探测任务(如嫦娥五号、Artemis计划)对高精度三维地形模型的需求激增。• 月球车路径规划:生成的三维模型可直接导入ROS(机器人操作系统)进行导航仿真。• 问题:传统基于单源数据(如光学影像)的模型存在遮挡区域空洞、纹理失真问题。• 架构:双分支CNN(处理光学影像)+ PointNet++(处理点云)

2025-10-26 09:42:38 402

原创 月球经纬度坐标

月球经纬度坐标系是用于确定月球表面位置的一种坐标系统,和地球经纬度坐标系类似,它也分为经度和纬度。

2025-10-26 09:37:04 570

原创 基于多模态数据融合与深度学习的月球表面高精度三维模型代码生成

提出一种结合激光雷达(LiDAR)点云、光学影像与重力场数据的月球三维模型生成框架,通过改进的PointNet++网络实现特征提取,并利用条件生成对抗网络(cGAN)优化模型细节。月球车路径规划:生成的三维模型可直接导入ROS(机器人操作系统)进行导航仿真。问题:传统基于单源数据(如光学影像)的模型存在遮挡区域空洞、纹理失真问题。架构:双分支CNN(处理光学影像)+ PointNet++(处理点云)激光雷达点云去噪:采用统计离群点移除(SOR)算法。本方法(单模态) 3.7 0.89。

2025-10-24 01:59:50 586

原创 【无标题】月球三维模型趋势是什么?

通过对大量标注好的月球表面图像进行学习,这些算法能够更精准地识别月球表面的地形特征,像陨石坑、山脉、月海等的边界和形态,从而为生成更精确的三维模型代码提供基础。通过将生成的月球三维模型与 VR/AR 技术相结合,科研人员和工程师可以在虚拟环境中对月球表面进行更直观的分析和规划,为月球探索任务提供更有效的支持。同时,整个生成过程将更加自动化,减少人工干预,提高生成效率和一致性。总的来说,月球三维模型代码生成技术正朝着更精确、更实时、更智能和更融合的方向发展,这将为月球探索和相关研究带来巨大的推动作用。

2025-10-24 01:43:39 439

原创 使用会话存储时,处理存储信息加密问题

在建表时对加密列使用半透明加密模式(MANUAL),加密口令即为创建用户时设置的半透明加密口令。用户可以调用系统函数来设置、获取会话的加密口令,当会话的加密口令与半透明加密口令一致时,才可以看到明文。例如创建用户并对用户授权,使其拥有对表的操作权限,设置为半透明加密的用户可以看到自己插入的数据,而其他用户看不到。可以使用对称加密算法,如 AES(高级加密标准)对存储的数据进行加密和解密。对会话数据进行加密和签名,确保数据的完整性和机密性。可以使用 HMAC(哈希消息认证码)对数据进行签名,防止数据被篡改。

2025-09-27 18:34:15 212

原创 不同浏览器中高效维护需要登录网站的登录态

使用浏览器的会话存储机制,如 Session Storage 或 Local Storage。可以在登录成功后,将关键的登录信息存储在这些存储区域中,后续在新的页面中读取这些信息,以保持登录态。在登录成功后,获取当前页面的 Cookie 并存储起来,在后续打开页面时,将这些 Cookie 设置到新的页面中,以此保持登录状态。在 Playwright 中,可以复用浏览器上下文(Context)来保持登录态。一个上下文可以包含多个页面,且在上下文关闭之前,登录状态会一直保持。

2025-09-27 18:31:31 347

原创 【无标题】使用 Playwright 实现跨 Chromium、Firefox、WebKit 浏览器自动化操作

环境安装首先要安装 Playwright 及其依赖库,命令如下:Bash这里安装了 Playwright、Pillow(用于图像处理)、pytesseract(用于 OCR 识别),并安装了所需的浏览器驱动2。

2025-09-27 18:27:00 867

原创 恶意广告拦截系统,优化及远景规划

1. 明确功能需求:确定广告拦截系统需具备的核心功能,如基于域名的广告拦截、对特定广告内容的识别与拦截(如图片广告、视频广告)、支持多种浏览器和操作系统等。3. 规划项目进度:根据功能需求和性能指标,制定详细的项目进度表,将研发过程划分为多个阶段,如需求分析阶段、设计阶段、编码阶段、测试阶段等,并为每个阶段设定合理的时间节点。通过以上准确的操作步骤,你可以有条不紊地进行广告拦截系统的研发、性能优化和远景规划,打造出一个高效、实用的广告拦截系统。例如,可以创建一个包含域名、拦截类型、添加时间等字段的表。

2025-09-22 12:39:40 1098

原创 手机经常被软件广告切屏,导致卡壳,卡顿现象如何解决

不过,我可以先给你一个基于C语言,利用哈希表进行简单域名拦截判断的示例代码框架,它实现了广告域名存储与快速查询功能,可以基于此进一步扩展开发完整软件。1. 网络请求拦截:要实现真正的广告拦截系统,需要结合操作系统的网络接口(如 Windows 的 WFP 或 Linux 的 Netfilter)来拦截网络请求,并根据哈希表中的广告域名进行过滤。5. 判断域名:isAdDomain函数判断给定域名是否为广告域名。// 判断域名是否在哈希表中(是否为广告域名)1. 使用哈希表存储广告域名。

2025-09-22 00:42:46 805 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除