- 博客(37)
- 收藏
- 关注
原创 目标检测论文解读复现之六基于RetinaNet的考拉检测方法
摘要:本文研究基于RetinaNet的考拉检测方法,针对考拉种群数量急剧下降的现状,提出利用深度学习技术进行高效检测。RetinaNet通过Focal Loss解决样本不平衡问题,结合FPN网络实现多尺度特征提取。研究详细阐述了数据集构建、数据增强策略和模型训练优化方法,包括混合精度训练、损失函数调整和学习率调度等关键技术。实验结果表明,该方法在考拉检测任务中兼具速度和精度优势,为野生动物保护提供了有效技术手段。(149字)
2026-01-19 12:58:23
527
原创 【玉米籽粒检测系列】基于YOLOv8与EfficientViT的智能识别系统实战
1.4. 摘要总结 本文介绍了一套基于YOLOv8和EfficientViT的玉米籽粒智能检测系统。该系统采用模块化设计,主要包含: 技术架构:结合YOLOv8目标检测和EfficientViT特征提取技术,实现高效精准的玉米籽粒识别 主界面设计:采用PyQt5开发,包含用户管理、模型训练和识别三大核心功能模块 交互体验:通过网格布局、动画效果和角色权限控制,提供直观友好的用户界面 系统亮点: 融合目标检测与Transformer技术,平衡精度与效率 响应式界面设计,支持不同用户权限 模块化架构便于功能扩展
2026-01-19 11:32:24
470
原创 YOLOv8轻量级改进:slimneck-prune技术实现番茄大小分选与成熟度识别
本文介绍了基于改进YOLOv8的番茄大小分选与成熟度识别系统。该系统采用SlimNeck-prune轻量化技术优化模型结构,通过多尺度特征融合和通道剪枝实现高效检测。硬件平台包含工业相机、光源和传送带,软件算法涵盖图像处理、目标检测、特征提取和分级分类。系统可同时实现番茄大小分级(小/中/大)和成熟度识别(基于颜色特征),相比传统机械分选具有无损、高效等优势。实验表明,改进后的YOLOv8模型在保持精度的同时显著降低了计算量,适用于工业自动化分选场景。
2026-01-11 16:50:29
675
原创 网球检测_YOLO13-C3k2-EfficientVIM改进实现与性能分析
本文提出了一种基于改进YOLOv13的网球检测算法C3k2-EfficientVIM。该算法通过融合EfficientVIM的高效多尺度特征集成能力和YOLO的目标检测框架,显著提升了网球检测性能。EfficientVIM采用特征提取、多尺度融合、高效注意力和预测头四个模块,结合轻量级设计和自适应特征融合机制。特别地,C3k2模块引入多分支结构和跨尺度连接,在降低30%计算量的同时增强特征表达能力。实验采用10,000张标注图像数据集,通过数据增强和优化训练策略,模型能够有效处理网球检测中的尺度变化、运动模
2026-01-11 15:10:22
810
原创 云顶之弈YOLOv8角色检测:从SOEP-PST到AI辅助决策系统
摘要: 本文介绍了基于YOLOv8的云顶之弈角色检测系统及AI辅助决策方案。通过构建SOEP-PST数据集(含10万+图像,50+角色类别),结合优化的YOLOv8模型(采用C2f模块和AFPN网络),实现92.3%的mAP和40FPS实时检测。系统集成屏幕捕获、TensorRT加速和多线程处理,并构建知识图谱驱动的决策模块,可提供阵容、装备等策略建议,实测提升玩家胜率15%。未来计划扩展跨平台支持,并融合大语言模型增强分析能力。该系统兼具电竞训练、游戏平衡分析等应用潜力。
2026-01-11 13:35:04
897
原创 烟草叶片病害检测_YOLO11-C3k2-MSBlock模型详解
本文提出了一种改进的YOLO11模型(C3k2-MSBlock)用于烟草叶片病害检测。针对传统方法效率低、精度差的问题,该模型通过融合多尺度卷积和注意力机制,显著提升了小目标病害的检测能力。在自建数据集(368张图像,11类病害)上的实验表明,改进模型的mAP达到0.912,比原始YOLO11提升7%,同时保持47FPS的实时性能。经轻量化处理后,模型体积减小47%,可在树莓派等边缘设备上部署应用。该研究为精准农业中的病害检测提供了有效解决方案。
2026-01-11 11:58:29
957
原创 【目标检测实战】基于YOLO11-FocalModulation的冲浪者识别系统
我们的系统采用了基于YOLO11-FocalModulation的深度学习模型,该模型结合了YOLO11的高效检测能力和FocalModulation的注意力机制,特别适合处理冲浪者在复杂海浪背景下的检测任务。本文介绍了一种基于YOLO11-FocalModulation的冲浪者识别系统,该系统结合了最新的YOLO11架构和FocalModulation注意力机制,能够有效处理复杂海浪背景下的冲浪者检测任务。
2026-01-11 10:29:33
905
原创 变电站设备智能检测与识别_SABL_RetinaNet实现_1
本文介绍了基于SABL和RetinaNet的变电站设备智能检测方法。通过将SAML的无锚框检测机制与RetinaNet的高精度特征提取能力相结合,我们实现了对变电站设备的准确检测。实验结果表明,该方法在检测精度和速度上均表现优异,具有良好的应用前景。💪变电站设备检测是电力系统运维的重要环节,智能检测技术的应用将大大提高运维效率,降低人工成本。未来,我们将继续优化算法,探索多模态融合、3D检测等新技术,为变电站设备检测提供更强大的解决方案。🚀。
2026-01-10 19:04:08
839
原创 基于YOLO11-C3k2-Faster-CGLU的草莓成熟度检测与分类系统
本文提出了一种基于改进YOLO11架构的草莓成熟度检测系统,通过引入C3k2-Faster-CGLU模块显著提升了检测性能。系统采用动态通道选择机制和门控单元优化特征提取,在自建数据集上达到92.3%的mAP0.5,比原始模型提升5.3%。实验表明,改进后的模型在遮挡和复杂光照条件下仍保持较高精度,推理速度达45FPS。通过轻量化处理,系统可部署于边缘设备,为草莓自动化分级采摘提供了高效解决方案。该技术有望扩展到其他农产品检测领域,推动智慧农业发展。
2026-01-10 17:31:58
905
原创 【计算机视觉系列】:基于YOLOv8-RepHGNetV2的鱿鱼目标检测模型优化与实现
本文提出了一种基于YOLOv8-RepHGNetV2的鱿鱼目标检测模型优化方法。针对复杂海洋环境下鱿鱼检测的挑战,模型采用改进的RepHGNetV2作为骨干网络,引入CBAM注意力机制和自适应特征融合模块,增强特征提取能力;改进的PANet颈部网络结合多尺度特征融合策略,提升对不同尺寸鱿鱼的检测性能。实验表明,该模型在保持检测效率的同时,显著提高了鱿鱼检测的精度和鲁棒性,为海洋生物监测提供了有效的技术方案。
2026-01-10 15:54:46
978
原创 工业零件视觉识别与定位系统_基于cascade-rcnn的实现
本文提出基于Cascade-RCNN的工业零件视觉识别系统,通过改进特征金字塔网络和区域提议网络,实现多尺度特征融合。系统采用模块化设计,包含数据预处理、模型训练、部署和分析四大模块。实验表明,该系统在工业零件数据集上mAP达92.5%,较传统方法提升15.3%,检测时间缩短至0.1秒以内。创新点包括:1)引入注意力机制的特征提取公式;2)多尺度锚框生成策略;3)模型剪枝与量化技术。系统已成功部署于生产线,检测精度达95%以上,显著提升工业自动化水平。
2026-01-10 14:20:13
617
原创 YOLOV8-MFM改进提升优质波浪检测性能
本文提出了一种基于YOLOV8的MFM改进方法,通过多尺度特征融合显著提升了波浪检测性能。该方法在骨干网络中引入自适应特征融合模块,增强了模型对复杂波浪特征的提取能力。实验结果表明,改进后的YOLOV8-MFM模型在海洋波浪数据集上mAP提升5.7%,达到88.0%,同时保持62FPS的实时检测速度。消融实验验证了MFM模块的有效性,为海洋环境监测提供了更高效的技术方案。未来可进一步探索轻量化设计和多模态数据融合。
2026-01-04 09:32:43
768
原创 YOLO13-C3k2-AdditiveBlock:公共交通工具检测与识别模型优化
本文提出了一种改进的YOLO13-C3k2-AdditiveBlock模型用于公共交通工具检测。针对原始C3k2模块在复杂场景下表现不足的问题,创新性地引入AdditiveBlock模块,通过加法注意力机制增强特征表示能力。改进后的模型在保持计算效率的同时,mAP@0.5指标提升4.4个百分点。实验表明,该模型在密集车辆、恶劣天气等复杂场景下表现优异,轻量化处理后仍能保持实时检测性能,适合智能交通系统部署。未来将进一步优化注意力机制和轻量化策略。
2026-01-04 08:58:46
989
原创 基于YOLO11与全局边缘信息传递的冰川湖检测研究_3
本文提出了一种基于YOLO11与全局边缘信息传递的冰川湖检测新方法,有效解决了传统检测技术在复杂地形和恶劣环境下的局限性。研究针对传统方法存在的三大痛点:检测精度不足、边缘识别模糊和小目标漏检问题,创新性地将YOLO11目标检测框架与全局边缘信息传递模块相结合。实验结果表明,该方法在精确率(92.3%)、召回率(88.7%)、F1值(90.4%)和mAP(94.2%@0.5)等关键指标上均显著优于传统方法,同时保持了28FPS的实时处理速度。特别值得注意的是,新方法在边缘保持指数(EPI)上达到0.82,较
2026-01-02 12:09:38
1360
原创 道路积水场景识别与分割:基于RetinaNet的道路积水检测与实例分割实现
本文提出了一种基于RetinaNet的道路积水检测与实例分割方法。通过构建专业积水数据集并设计数据增强策略,优化RetinaNet模型架构,采用多任务损失函数实现高精度检测。实验表明,该方法在测试集上取得mAP@0.5为0.892、IoU为0.854的优异性能,单帧处理时间仅35ms。系统支持云端和边缘设备部署,已成功应用于城市道路监测和高速公路预警场景,准确率达92.3%,有效提升了城市防汛能力。
2026-01-01 11:24:37
1008
原创 鱼类识别与分类:基于freeanchor_x101-32x4d_fpn_1x_coco的三种鱼类自动检测
本文提出了一种基于freeanchor_x101-32x4d_fpn_1x_coco模型的三种鱼类自动识别方法。通过动态锚框分配优化、改进损失函数设计以及多尺度训练策略,显著提升了模型性能。实验结果显示,改进后的模型在mAP@0.5、召回率和精确率等指标上分别提升了8.3%、11.6%和10.6%,同时保持26.2FPS的实时检测速度。该系统可应用于海洋生态研究、渔业资源管理等场景,未来计划扩展识别种类并实现轻量化部署。
2026-01-01 10:57:39
661
原创 YOLOv26鱼类目标检测与计数任务实现与优化
YOLOv26在鱼类目标检测与计数任务中表现出色,通过合理的数据准备、模型训练和优化策略,可以实现高精度的实时检测。3D检测:实现对鱼类体积和姿态的估计多模态融合:结合声呐、红外等多源信息自监督学习:减少对标注数据的依赖推广:更多鱼类检测技术分享通过持续的技术创新和应用探索,鱼类目标检测与计数技术将为智慧渔业和海洋生态研究提供更强大的支持,促进水产养殖的可持续发展和海洋生态的保护。本文详细介绍了YOLOv26在鱼类目标检测与计数任务中的应用与优化。
2025-12-31 20:55:21
1016
原创 YOLOv8多类别目标检测实战:车辆、火灾、人员与烟雾识别系统详解
本文详细介绍了基于YOLOv8的多类别目标检测系统实现方法,涵盖车辆、火灾、人员和烟雾识别。首先讲解了环境配置,包括PyTorch和YOLOv8的安装;然后重点阐述了数据集的获取、标注和划分方法;最后展示了模型训练流程,包括配置文件设置和训练代码实现。文章提供了完整的技术实现路径,从数据准备到模型训练,为开发多目标检测系统提供了实用指导。
2025-12-31 20:19:17
937
原创 YOLOv8可回收垃圾分类识别:DRBNCSPELAN模型优化与应用
本文提出基于YOLOv8的DRBNCSPELAN模型优化方法,构建了高效的可回收垃圾分类识别系统。系统采用PySide6框架实现组件化设计,包含15种功能组件支持多种识别模式(图片/视频/批量处理)。通过多线程架构设计,实现了识别工作线程与批量处理功能,确保界面响应流畅。系统支持可视化结果展示、实时性能监控和多种格式导出,在识别准确率和处理速度上均有显著提升。该方案为智能垃圾分类提供了有效的技术实现路径。
2025-12-29 12:56:39
825
原创 基于YOLO11-C3k2-DWR-DRB的药瓶缺陷检测系统实现_2
本文提出了一种基于改进YOLO11模型的药瓶缺陷检测系统。该系统创新性地融合了C3k2模块、DWR动态权重调整和DRB特征融合结构,显著提升了检测精度和效率。通过精心设计的数据增强策略和多任务损失函数,系统能够准确识别裂纹、污渍、变形等常见药瓶缺陷。实验结果表明,该系统在mAP@0.5指标上达到0.9以上,优于传统检测方法。系统采用前后端分离架构,实现了从图像采集到缺陷识别的全流程自动化,为医药行业质量控制提供了可靠的技术支持。
2025-12-29 12:29:27
886
原创 YOLO11-DRBNCSPELAN:育秧盘裂缝检测系统实现与优化
摘要:本研究提出基于YOLO11-DRBNCSPELAN的育秧盘裂缝智能检测系统,通过融合DRBN(密集残差网络)和CSPELAN(跨尺度金字塔高效层聚合)模块,显著提升细小裂缝检测精度。系统采用模块化设计,包含数据采集、预处理、检测和结果展示四个核心模块。创新性地构建了包含2000张育秧盘图像的数据集,并开发针对性的预处理流程(灰度化+CLAHE增强+高斯滤波)。DRBN模块通过密集残差连接增强特征传播,CSPELAN实现多尺度特征高效融合,在测试集上达到92.3%检测准确率。该系统为农业生产智能化提供了
2025-12-27 10:05:51
602
原创 【轨道检测技术】基于Sparse R-CNN的铁路扣件缺陷检测与分类模型详解
本文提出了一种基于改进Sparse R-CNN的铁路扣件缺陷检测与分类模型。针对传统人工巡检效率低、漏检率高的问题,该模型通过引入多尺度特征融合、注意力机制和优化的数据增强策略,显著提升了复杂铁路场景下的检测性能。实验结果表明,改进后的模型在平均精度均值(mAP)上提升5.7%,小尺度缺陷检测提升8.3%,推理速度比Faster R-CNN快30%。模型经轻量化处理后实现30fps实时处理,已成功部署于铁路巡检车。该研究为铁路智能化运维提供了有效解决方案,未来可进一步探索无监督学习、多模态融合等技术优化方向
2025-12-26 19:14:06
842
原创 使用_yolov10n-LAWDS_实现酵母细胞计数与活性检测_Python
本文提出了一种基于改进YOLOv10n网络和LAWDS模块的酵母细胞计数与活性检测方法。针对酵母细胞检测面临的尺寸小、密度高、形态相似等挑战,研究构建了包含2925张图像的数据集,并采用多种数据增强策略扩充样本。创新性地设计了LAWDS模块,结合注意力机制和分组卷积增强特征提取能力。通过尺度感知损失函数和自适应IoU损失函数优化网络性能。实验表明,该方法在精确率、召回率和计数准确率等指标上均优于YOLOv5n、YOLOv8n等对比算法,计数准确率达到93.8%,具有较好的实用价值。
2025-12-25 12:43:22
582
原创 YOLOv8改进创新:SPPF-LSKA结构在棉花植株病害检测中的应用研究
本文提出了一种改进的YOLOv8模型(YOLOv8-SPPF-LSKA)用于棉花植株病害检测。通过融合空间金字塔池化快速(SPPF)和轻量级空间注意力(LSKA)模块,增强了模型对复杂背景和小尺寸病害区域的检测能力。实验结果表明,改进模型在mAP@0.5指标上达到0.882,相比原始YOLOv8提升6.1%,同时保持62FPS的实时检测速度。消融实验验证了SPPF和LSKA模块的协同效应。研究还开发了基于嵌入式设备的实际应用系统,为田间病害检测提供了有效解决方案。
2025-12-25 12:17:55
740
原创 YOLO11-SEG在工业AGV实时检测中的创新应用_SWC算法解析
摘要 本文提出基于YOLO11-SEG和SWC算法的工业AGV实时检测系统,解决复杂工业环境中的目标检测与导航挑战。YOLO11-SEG通过改进的CSP-Darknet和PANet结构实现高效多尺度检测与分割,结合动态锚框和知识蒸馏技术,达到95.2% mAP和35 FPS性能。创新性SWC算法融合空间距离与特征相似度,通过动态加权提升聚类精度18.7%,显著优化不规则障碍物识别。系统采用模块化设计,集成图像采集、预处理、检测及路径规划,通过双目摄像头和动态批处理实现实时可靠的环境感知,为工业4.0智能物流
2025-11-13 16:49:58
1087
原创 YOLOv8-SPDConv作物疾病检测:豆类、草莓和番茄病害识别系统详解
本文提出了一种基于YOLOv8-SPDConv的作物疾病智能检测系统,针对豆类、草莓和番茄三大作物的15种常见病害实现高精度识别。系统采用8000张标注图像构建专用数据集,通过数据增强和预处理提升模型泛化能力。创新性地在YOLOv8中引入SPDConv模块,增强了对细小病害特征的提取能力,使mAP@0.5达到0.90,优于主流检测模型。实验结果表明,该系统在保持42FPS推理速度的同时,实现了精确的病害分类与定位。通过模型轻量化部署和移动端应用开发,为农业生产提供了实时高效的病害检测解决方案。未来将扩展更多
2025-11-13 16:21:11
891
原创 【最新!】海洋微生物显微图像识别与分类系统Yolov8-HAFB-2实现
本文提出了一种基于YOLOv8的海洋微生物显微图像识别系统Yolov8-HAFB-2。通过引入混合注意力融合模块和改进损失函数,系统实现了89.7%的mAP@0.5精度,处理速度达45FPS。该系统在海洋生物学研究和环境监测中展现出应用潜力,能高效识别10类微生物,显著提升检测效率。实验表明改进模型对小尺寸和复杂形态微生物的识别准确率提升明显,为海洋科研提供了实用的自动分析工具。
2025-11-12 18:13:19
802
原创 茶叶嫩芽健康状态检测与可疑叶片识别:基于YOLO11-C3k2-IDWB模型的智能检测系统
摘要:本文提出基于YOLO11-C3k2-IDWB模型的茶叶嫩芽健康检测系统,通过计算机视觉技术实现智能化检测。系统分析了茶叶嫩芽的视觉特征(颜色、纹理、形状),采用改进的YOLO架构结合C3k2跨尺度融合模块和IDWB注意力机制,显著提升小目标检测性能。实验使用包含10,000张标注图像的数据集,应用多维度数据增强技术,最终模型在茶叶健康状态分类任务中展现出优越性能,为茶叶质量监控提供智能化解决方案。该系统可准确识别健康叶片与可疑病变叶片,有效解决传统人工检测效率低、主观性强的问题。
2025-11-12 17:39:00
1029
原创 YOLO改进之在YOLOv8中加入EfficientHead实现桥梁坍塌检测
更高效的骨干网络:采用CSP-Darknet53作为骨干网络,在保持精度的同时提升了特征提取能力。更优的颈部结构:使用PANet结构进行特征融合,增强了多尺度特征表达能力。更先进的检测头:采用Anchor-free检测方式,简化了模型设计,提高了对小目标的检测能力。本文介绍了如何在YOLOv8中集成EfficientHead模块,构建了一个专门用于桥梁坍塌检测的高性能模型。实验结果表明,改进后的模型在保持较高推理速度的同时,显著提升了检测精度。多模态融合。
2025-11-11 10:27:54
731
原创 珊瑚礁底栖物质分类与检测_YOLO13-C3K2-JDPM实现_1
摘要 本文提出了一种基于YOLO13-C3K2-JDPM模型的珊瑚礁底栖物质分类与检测系统。系统采用包含35类珊瑚及礁相关物质的10,000张图像数据集,通过C3模块增强特征提取能力,引入K2注意力机制优化特征敏感性。关键创新包括JDPM损失函数改进和多尺度训练策略,有效提升了对小目标和重叠目标的检测性能。系统架构包含数据预处理、模型训练、部署和结果展示四个模块,评估指标采用精度、召回率和mAP值。实验表明,该方法在珊瑚礁生态监测中具有较高的准确性和实用性,为海洋保护提供了有效的技术手段。
2025-11-08 14:22:30
802
原创 陶瓷物品识别与分类 - 基于mask-rcnn_r50_fpn_8xb8-amp-lsj-200e_coco模型的实现与分析_3
本文介绍了基于mask-rcnn_r50_fpn模型的陶瓷物品识别与分类系统。该系统采用深度学习技术,支持单图识别、批量处理、视频分析和实时摄像头检测等功能。核心特点包括:1)多线程架构确保UI流畅;2)模块化设计涵盖检测、统计、可视化等完整流程;3)支持实例分割实现精准轮廓识别;4)批量处理功能大幅提升工作效率。系统特别适用于博物馆、收藏馆等需要高效管理大量陶瓷藏品的场景,提供从单件识别到大规模分类的全面解决方案。
2025-11-07 10:34:16
660
原创 【目标检测】YOLOv10n-VanillaNet实现蜈蚣识别全流程详解
本文提出了一种基于YOLOv10n-VanillaNet的蜈蚣检测算法,通过结合VanillaNet的高效特征提取能力和YOLOv10n的检测性能,实现了在复杂环境下对蜈蚣的高精度识别。算法针对蜈蚣的多足结构、细长身体等特征进行了网络优化,包括骨干网络改进和多尺度特征自适应融合模块设计。实验结果表明,该方法在自建数据集上mAP@0.5达到92.3%,比原始YOLOv10n提高3.5个百分点,同时参数量减少40%,推理速度提升25%,适用于农业监测和家庭防控等场景。消融实验验证了各改进模块的有效性,为轻量级目
2025-11-07 10:11:47
836
原创 【医学影像】基于多序列MRI的脑肿瘤自动检测与分类_YOLO11-FasterNet_1
本文提出了一种基于YOLO11-FasterNet的多序列MRI脑肿瘤自动检测与分类方法。该方法整合了YOLO11的目标检测能力和FasterNet的高效特征提取能力,通过多分支融合结构处理T1、T1增强、T2和FLAIR等MRI序列数据。实验结果表明,该模型在BraTS 2021数据集上取得了mAP@0.5达到0.867,分类准确率91.5%的优异性能,同时推理速度达12.7 FPS,显著优于现有方法。该技术在临床诊断、手术规划等领域具有重要应用价值,未来将通过模型轻量化、多模态融合等方向进一步优化。
2025-11-06 10:50:11
1010
原创 基于YOLO11_C2PSA_Mona的啤酒瓶品牌识别与分类系统实现
本文介绍了一种基于YOLO11_C2PSA_Mona模型的啤酒瓶品牌识别与分类系统。该系统通过改进的C2PSA注意力机制和Mona数据增强策略,显著提升了小目标检测能力。文章详细阐述了数据集构建、模型架构、训练过程和评估结果,展示系统在5个啤酒品牌上平均达到95%的精确率和93%的召回率。同时介绍了系统部署方案及实际应用效果,包括量化加速优化和生产线上每小时5000瓶的检测能力。该系统有效降低了人工检测成本,提升了质量控制水平。
2025-11-06 10:26:51
715
原创 环纹海蛇检测与识别_yolov8-GLSA模型应用
本文介绍了基于改进YOLOv8模型的环纹海蛇检测方法,通过引入GLSA注意力机制增强特征提取能力。实验结果表明,YOLOv8-GLSA在1575张图像数据集上达到0.882 mAP@0.5,较原始YOLOv8提升4.4个百分点,同时保持40FPS的实时性能。该方法适用于海洋生物监测,为环纹海蛇种群统计提供了高效准确的自动化解决方案。
2025-11-05 10:38:51
1032
原创 【深度学习】城市街道多目标检测与识别_mask-rcnn_hrnetv2p-w40_1x_coco模型解析
本文详细解析了基于Mask R-CNN和HRNetV2p的城市街道多目标检测模型。该模型在COCO数据集上取得了38.5%的mask AP表现,能够同时检测行人、车辆等目标。文章深入探讨了模型架构、训练配置及性能评估,并分析了自动驾驶、智能监控等应用场景。针对夜间检测和小目标识别等挑战,提出了数据增强、多尺度训练等解决方案。未来研究将聚焦提升模型在极端天气下的鲁棒性和实时性。
2025-11-05 09:21:52
1151
原创 Mosaic 数据增强方法,附Python完整代码
Mosaic数据增强方法通过随机组合四张图片并调整检测框坐标,有效提升目标检测性能。该方法可以增加数据多样性,增强模型鲁棒性,并改善小目标检测效果。实现过程包括加载图片及标签信息、图像分割、缩放、拼接以及边界框坐标调整等步骤。代码示例展示了完整的Mosaic数据增强流程,适用于目标检测任务中的数据预处理。
2025-09-30 10:49:21
425
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅