基础框架代码

由于未提供具体的功能需求,以下是一个通用的Libvio(视觉惯性里程计库)代码框架示例,用于实现基本的视觉惯性里程计功能。该代码假设使用C++和OpenCV库,并包含视觉特征跟踪与IMU数据融合的基础逻辑。

基础框架代码

#include <opencv2/opencv.hpp>
#include <vector>
#include <Eigen/Dense>

// 定义IMU数据结构
struct IMUData {
    double timestamp;
    Eigen::Vector3d accel;
    Eigen::Vector3d gyro;
};

// 定义视觉特征点结构
struct FeaturePoint {
    cv::Point2f pt;
    int id;
};

// Libvio核心类
class Libvio {
public:
    Libvio() {
        // 初始化参数
        R_imu_cam = Eigen::Matrix3d::Identity(); // IMU到相机的旋转矩阵
        t_imu_cam = Eigen::Vector3d::Zero();     // IMU到相机的平移向量
    }

    // 添加IMU数据
    void addIMUData(const IMUData& imu) {
        imu_buffer.push_back(imu);
    }

    // 添加图像数据
    void addImage(const cv::Mat& img, double timestamp) {
        std::vector<FeaturePoint> features = extractFeatures(img);
        processFeatures(features, timestamp);
    }

private:
    // 特征提取
    std::vector<FeaturePoint> extractFeatures(const cv::Mat& img) {
        std::vector<cv::KeyPoint> keypoints;
        cv::Mat descriptors;
        cv::Ptr<cv::ORB> orb = cv::ORB::create();
        orb->detectAndCompute(img, cv::Mat(), keypoints, descriptors);

        std::vector<FeaturePoint> features;
        for (size_t i = 0; i < keypoints.size(); i++) {
            features.push_back({keypoints[i].pt, static_cast<int>(i)});
        }
        return features;
    }

    // 处理特征点
    void processFeatures(const std::vector<FeaturePoint>& features, double timestamp) {
        // 特征跟踪与状态估计逻辑
        if (!last_features.empty()) {
            // 实现光流跟踪或特征匹配
            // 此处省略具体实现
        }
        last_features = features;
    }

    // 成员变量
    std::vector<IMUData> imu_buffer;
    std::vector<FeaturePoint> last_features;
    Eigen::Matrix3d R_imu_cam;
    Eigen::Vector3d t_imu_cam;
};

关键功能说明

  • IMU与图像数据输入:通过addIMUDataaddImage方法分别接收IMU和图像数据。
  • 特征提取:使用ORB算法提取图像特征点,支持替换为其他特征(如SIFT、SURF)。
  • 松耦合架构:IMU和视觉数据通过时间戳异步处理,适合后续扩展紧耦合优化。

扩展建议

  1. 紧耦合优化:添加基于滑动窗口的BA(Bundle Adjustment)或滤波算法(如EKF)。
  2. 多传感器标定:实现在线标定R_imu_camt_imu_cam的功能。
  3. 性能优化:引入多线程处理或GPU加速特征提取。

如需针对特定功能(如回环检测、地图构建)进一步定制代码,需提供更详细的需求描述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值