由于未提供具体的功能需求,以下是一个通用的Libvio(视觉惯性里程计库)代码框架示例,用于实现基本的视觉惯性里程计功能。该代码假设使用C++和OpenCV库,并包含视觉特征跟踪与IMU数据融合的基础逻辑。
基础框架代码
#include <opencv2/opencv.hpp>
#include <vector>
#include <Eigen/Dense>
// 定义IMU数据结构
struct IMUData {
double timestamp;
Eigen::Vector3d accel;
Eigen::Vector3d gyro;
};
// 定义视觉特征点结构
struct FeaturePoint {
cv::Point2f pt;
int id;
};
// Libvio核心类
class Libvio {
public:
Libvio() {
// 初始化参数
R_imu_cam = Eigen::Matrix3d::Identity(); // IMU到相机的旋转矩阵
t_imu_cam = Eigen::Vector3d::Zero(); // IMU到相机的平移向量
}
// 添加IMU数据
void addIMUData(const IMUData& imu) {
imu_buffer.push_back(imu);
}
// 添加图像数据
void addImage(const cv::Mat& img, double timestamp) {
std::vector<FeaturePoint> features = extractFeatures(img);
processFeatures(features, timestamp);
}
private:
// 特征提取
std::vector<FeaturePoint> extractFeatures(const cv::Mat& img) {
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
cv::Ptr<cv::ORB> orb = cv::ORB::create();
orb->detectAndCompute(img, cv::Mat(), keypoints, descriptors);
std::vector<FeaturePoint> features;
for (size_t i = 0; i < keypoints.size(); i++) {
features.push_back({keypoints[i].pt, static_cast<int>(i)});
}
return features;
}
// 处理特征点
void processFeatures(const std::vector<FeaturePoint>& features, double timestamp) {
// 特征跟踪与状态估计逻辑
if (!last_features.empty()) {
// 实现光流跟踪或特征匹配
// 此处省略具体实现
}
last_features = features;
}
// 成员变量
std::vector<IMUData> imu_buffer;
std::vector<FeaturePoint> last_features;
Eigen::Matrix3d R_imu_cam;
Eigen::Vector3d t_imu_cam;
};
关键功能说明
- IMU与图像数据输入:通过
addIMUData
和addImage
方法分别接收IMU和图像数据。 - 特征提取:使用ORB算法提取图像特征点,支持替换为其他特征(如SIFT、SURF)。
- 松耦合架构:IMU和视觉数据通过时间戳异步处理,适合后续扩展紧耦合优化。
扩展建议
- 紧耦合优化:添加基于滑动窗口的BA(Bundle Adjustment)或滤波算法(如EKF)。
- 多传感器标定:实现在线标定
R_imu_cam
和t_imu_cam
的功能。 - 性能优化:引入多线程处理或GPU加速特征提取。
如需针对特定功能(如回环检测、地图构建)进一步定制代码,需提供更详细的需求描述。