- 博客(8)
- 收藏
- 关注
原创 鸿蒙Electron基础入门--拓展
使用electron-builder适配鸿蒙系统,修改package.json:"build": {"productName": "鸿蒙日志同步工具","arch": ["x64", "arm64"] // 适配PC与平板架构],"deviceTypes": ["phone", "tablet", "pc"], // 多设备支持打包命令:# 生成鸿蒙安装包(.app格式)
2025-11-27 23:28:04
671
1
原创 鸿蒙Electron基础入门
鸿蒙 Electron 是基于OpenHarmony(鸿蒙开源版)操作系统的桌面应用开发框架,本质是 Electron 技术在鸿蒙生态的适配版本。它允许开发者使用 HTML、CSS、JavaScript/TypeScript 编写代码,通过 “渲染进程 + 主进程” 架构,打包生成可在鸿蒙桌面设备(如鸿蒙 PC、智慧屏)运行的原生应用。本文通过基础概念、环境搭建、核心原理和实战案例,完成了鸿蒙 Electron 的入门教学。核心要点:掌握 “双进程模型” 和 “IPC 通信”,理解鸿蒙 API 的适配逻辑。
2025-11-27 23:09:17
631
原创 如何快速掌握从CPU到NPU的算子迁移与性能调优方法?
在大模型与深度学习规模化应用的背景下,NPU(神经网络处理单元)凭借并行计算优势成为模型推理 / 训练的核心硬件,但 CPU 与 NPU 在架构设计、指令集、内存模型上的本质差异(如图 1),导致算子迁移面临兼容性适配、性能瓶颈定位等关键挑战。据昇腾社区数据显示,未优化的算子迁移后性能损耗可达 30%-70%,而科学的迁移流程与调优策略能使 NPU 算力利用率提升至 80% 以上。本文聚焦 “快速落地” 需求,整合行业成熟工具链与实操案例,帮助开发者高效完成算子迁移与性能调优。**
2025-11-21 12:48:56
1319
1
原创 Ascend C算子基础入门:从CPU到NPU的搭建与优化
随着人工智能与高性能计算的深度融合,算力需求呈指数级增长,传统 CPU 架构在并行计算效率上逐渐显现瓶颈。华为 Ascend NPU(神经网络处理器)凭借其专用架构设计,在 AI 推理与训练场景中实现了算力与能效的双重突破。Ascend C 作为面向 Ascend NPU 的算子开发编程语言,为开发者提供了从 CPU 算子迁移、NPU 算子搭建到性能优化的全流程工具链。
2025-11-20 23:50:43
822
原创 Ascend C 算子基础入门:架构设计与性能优化实践
在 AI 大模型与深度学习快速发展的当下,算子作为神经网络计算的核心单元,其性能直接决定了 AI 系统的运行效率。Ascend C 作为昇腾 CANN 架构推出的算子开发语言,既原生支持 C/C++ 标准,又深度适配昇腾 AI 硬件特性,实现了开发效率与运行性能的完美平衡。本文面向算子开发初学者,从昇腾软硬件基础架构切入,系统解析 Ascend C 的核心编程模型与架构设计逻辑,再通过实战案例详解 Tiling 优化、流水优化等关键性能调优技巧,最终帮助开发者构建高性价比的自定义算子。
2025-11-20 21:38:36
831
原创 Ascend C算子基础入门:从架构原理到工程落地的深度指南
AI算力时代下,AscendC算子开发成为连接AI算法与昇腾NPU硬件性能的关键。本文系统介绍了AscendC的核心价值、架构原理和开发实践流程。AscendC通过架构原生适配和低门槛开发特性,能有效释放硬件潜能,在自动驾驶、大模型训练等场景中实现性能突破。文章详细解析了AscendC的异构编程框架特性、算子分类方法,并以ReLU6算子为例,完整展示了从环境配置、代码编写到编译调试的开发全流程。通过精准的硬件资源调度和智能内存管理,AscendC可显著提升计算效率,为AI应用提供高性能算子支持。
2025-11-20 00:02:36
782
原创 Ascend C算子基础入门——拓展
摘要: AscendC是华为针对昇腾NPU设计的算子开发语言,通过原生适配硬件架构、支持全场景算子和简化开发流程,助力AI模型高效运行。开发流程涵盖环境搭建(需昇腾设备及AscendStudio工具)、算子定义与实现(核函数编写、主机端调用)、编译调试及性能优化。关键点包括:掌握C++基础、理解异构编程(CPU-NPU协同)、合理配置线程/内存。常见问题如数据传输效率低、线程配置不当等需针对性解决。进阶方向涉及高性能优化(指令/内存)、低精度计算及复杂算子开发。掌握AscendC可显著提升昇腾生态下的算子定
2025-11-19 23:56:18
1120
原创 Ascend C算子基础入门
3. 验证调试:用 ICPU_RUN_KF 宏在CPU侧验证逻辑正确性,再通过内核调用符测试NPU侧运行效果;- 运行环境:算子运行在昇腾NPU的AI Core计算核心上,采用CPU(主机端)+NPU(设备端)协同架构,CPU管逻辑控制,NPU负责并行计算。- 编程范式:主流矢量编程分CopyIn(数据从全局内存搬至本地内存)、Compute(执行并行计算)、CopyOut(结果搬回全局内存)三步,通过Queue的EnQue/DeQue接口实现任务间同步通信。// CPU侧验证核函数。
2025-11-19 13:31:52
325
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅