- 博客(51)
- 收藏
- 关注
原创 《Scrapy 进阶:自定义中间件反爬策略(含 IP 代理 / UA 池)》
在爬虫开发中,网站常采用反爬机制(如 IP 封禁或 UA 检测),导致爬取失败。Scrapy 框架的下载器中间件(Downloader Middleware)允许你自定义请求处理逻辑,有效应对这些挑战。通过实现 IP 代理轮换和 UA 池,你可以模拟真实用户行为,降低被封锁风险。以下我将逐步解释核心概念和实现方法,确保内容真实可靠。在 Scrapy 项目的文件中定义新类。在方法中修改请求。使用随机选择逻辑实现代理和 UA 轮换。
2025-11-03 14:33:37
1622
原创 《Docker 多阶段构建:让镜像体积减少 80%》
指令,将构建过程分为多个阶段。这能有效减少最终镜像的体积,因为它只保留运行所需的文件,而丢弃构建工具和中间文件。体积减少幅度可达 $80%$ 或更高(例如,从 $1\,\text{GB}$ 降至 $200\,\text{MB}$),具体取决于应用场景。原始镜像体积可能为 $500\,\text{MB}$,使用多阶段后可降至 $100\,\text{MB}$(减少 $80%$)。通过多阶段构建,您可以轻松实现镜像瘦身,提升部署效率。实际减少比例取决于应用复杂度,但 $80%$ 是常见目标。
2025-11-02 18:55:23
253
原创 《CSS Flex 布局 10 分钟快速上手指南(附实战案例)》
⚡减少浮动/定位的代码量🌐完美适配响应式设计🎯轻松实现复杂对齐需求💡 主流浏览器支持率超过 98%提示:结合媒体查询@media可创建更强大的响应式布局!
2025-11-02 16:14:00
315
原创 JVM 调优进阶:Shenandoah GC 的停顿时间优化参数
触发并发周期的初始空闲内存百分比(默认 70%) $$ \text{触发条件} = \frac{\text{空闲内存}}{\text{总内存}} \times 100% < \text{设定值} $$:参数调整需在测试环境验证,避免过度追求低停顿导致吞吐量显著下降。Shenandoah 是一款专注于降低停顿时间的并发垃圾收集器,特别适合大内存应用场景。设定单次停顿时间上限(默认 10ms),GC 会主动调整工作节奏确保停顿不超过此阈值。降低软/弱引用处理频率(默认 5),减少停顿波动。
2025-11-02 14:49:47
170
原创 Astro 4.0 静态站点生成:增量构建与性能优化
Astro 4.0 通过增量构建降低 85% 构建时间,配合岛屿架构实现接近瞬时的交互响应,特别适合内容密集型站点。建议结合预渲染与按需水合平衡 SEO 与交互性能。
2025-11-02 13:42:36
286
原创 Jakarta EE 12 Data 简化数据访问:CRUD 操作的新方式
注解自定义 JPQL,但基础 CRUD 操作完全可通过接口默认方法覆盖。此设计显著提升开发效率,同时保持 Jakarta EE 的强类型安全和标准化优势。的标准化实现,开发者只需定义接口即可自动获得完整的 CRUD 操作能力,无需手动编写重复代码。支持关系数据库 (JDBC/JPA) 和 NoSQL (MongoDB/Cassandra)方法签名错误在编译阶段暴露(优于运行时 JPQL 错误),通过声明式编程模型大幅简化数据访问层的开发。(对比传统 JPA 实现)通过扩展基础接口(如。
2025-11-01 22:48:13
276
原创 PyTorch Lightning 进阶:多 GPU 训练与 TensorBoard 集成
PyTorch Lightning 通过抽象底层复杂性,简化了多 GPU 训练和 TensorBoard 日志集成。中指定 GPU 数量和并行策略即可启用多 GPU 训练,支持数据并行(DP)、分布式数据并行(DDP)等模式。通过上述配置,可高效利用多 GPU 资源并实时监控训练过程,显著提升实验迭代效率。PyTorch Lightning 自动集成 TensorBoard,只需在。查看损失曲线、指标等。
2025-11-01 21:41:52
261
原创 Vue3+Vite 优化:按需加载 + Tree Shaking + 缓存策略
【代码】Vue3+Vite 优化:按需加载 + Tree Shaking + 缓存策略。
2025-11-01 20:34:37
323
原创 模型压缩:剪枝与量化让 AI 模型更小更快
模型压缩的核心目标是通过减少参数数量或降低数值精度来优化模型。这能显著降低存储需求、计算开销和能耗。例如,一个原始模型可能有数百万参数,压缩后可能减少到原来的10%-20%,而精度损失控制在可接受范围内。剪枝和量化相辅相成,常结合使用。
2025-11-01 19:26:48
462
原创 Git 入门:版本控制基本操作
版本控制是管理代码变更的核心工具,Git作为分布式版本控制系统,具有高效灵活的特点。配置、标签管理和冲突解决等进阶内容。掌握这些基础操作后,可继续学习。命令查看详细帮助文档。
2025-11-01 18:22:53
269
原创 Gradle配置:Unity与Android原生工程依赖管理
在Unity与Android原生工程集成时,Gradle依赖管理是关键环节。:每次Unity导出工程后,需重新同步Gradle项目(执行。
2025-11-01 17:11:13
143
原创 服务网格应用:Istio流量管理机制与实战案例
某电商平台采用此方案后,版本发布故障率下降$82%$,服务可用性提升至$99.995%$,流量切换过程平均耗时$<3$秒。通过动态流量调度,资源利用率提升约$40%$。通过Istio的声明式配置,企业可构建零停机部署能力,实现从"硬切换"到"智能流量治理"的转型。
2025-11-01 16:02:12
486
原创 Java后端实战:Spring Boot快速搭建电商系统
通过以上步骤,可在30分钟内完成电商系统核心骨架搭建,后续可根据业务需求逐步扩展功能模块。使用Swagger测试API: 访问。
2025-10-31 23:06:30
340
原创 KingbaseES与Python的兼容性测试:从安装到验证
KingbaseES(人大金仓数据库)与Python的兼容性良好,可通过。下载对应操作系统的安装包(如Linux RPM包)。:生产环境使用连接池(如。),并定期更新驱动至。
2025-10-31 22:07:12
291
原创 Vue 实战:用 Vue3+Element Plus 做一个表格页面
通过以上实现,可快速构建出功能完善的企业级表格页面,满足数据展示、筛选、分页等核心需求。
2025-10-31 21:02:41
257
原创 系统设计:秒杀系统的核心架构与优化
秒杀活动通常涉及商品库存有限(例如100件),在特定时间点(如0点)开启抢购。系统需处理瞬时高峰流量($QPS \geq 10,000$),同时保证公平性和可靠性。失败案例包括系统崩溃或超卖(库存负数),因此架构设计至关重要。秒杀系统核心在于分层架构和优化策略的结合:通过缓存减少直接数据库访问,异步队列解耦高峰流量,限流保护系统,数据库分片提升扩展性。优化后,系统能支持$QPS \geq 50,000$,超卖概率趋近于0,延迟控制在毫秒级。
2025-10-31 19:00:51
421
原创 K8s Volume 进阶:PersistentVolumeClaim 动态绑定
PersistentVolumeClaim 动态绑定是 Kubernetes 存储管理的进阶功能,通过 StorageClass 实现自动化 PV 供应。它简化了运维,提高了集群的弹性和效率。在实际应用中,建议根据环境(如云服务商)定制 StorageClass 参数,并通过监控工具(如 Prometheus)跟踪存储使用情况。如果您有具体场景(如使用特定云存储),我可以进一步细化示例!
2025-10-31 17:58:54
222
原创 Neo4j 图算法:最短路径与社区发现
基于贪心策略,适用于带权重的有向图,时间复杂度为 $O(|E| + |V|\log|V|)$$g(n)$ 为起点到 $n$ 的实际代价,$h(n)$ 为 $n$ 到终点的预估代价。其中 $A_{ij}$ 为邻接矩阵,$k_i$ 为节点 $i$ 的度,$m$ 为总边数。用于查找图中两点间的最短连接路径,适用于路由规划、社交关系挖掘等场景。用于识别图中紧密连接的子图(社区),适用于社交网络分析、推荐系统等。基于邻居标签投票机制,时间复杂度 $O(|E|)$。其中 $|V|$ 为节点数,$|E|$ 为边数。
2025-10-31 17:00:36
384
原创 SQL 窗口函数:排名与累计求和的实现
实际应用场景:金融累计收益分析、销售业绩动态排名、用户行为序列分析等。窗口函数显著简化复杂分析查询,避免自连接带来的性能损耗。窗口函数在保留原始行数据的同时,通过定义。跳跃排名(同值同名,后续跳过名次)连续排名(同值同名,后续名次连续)连续唯一排名(同值不同名)
2025-10-31 15:58:16
237
原创 远程协作:VS Code Live Share 配置
当协作双方代码版本差异较大时,系统会自动计算差异值$d$,其中$d = \frac{\Delta L}{T} \times 100%$($\Delta L$为差异行数,$T$为总行数)。若$d > 15%$建议先同步主干分支。
2025-10-30 17:38:39
408
原创 Spring Boot Actuator 监控:自定义指标与健康检查
添加依赖pom.xml):创建自定义指标@Component在业务中触发指标// 指标更新查看指标数据: 访问获取实时数据:实现创建健康检查器@Component@Override} else {// 模拟数据库连接检测// 实际需替换为真实检测逻辑配置暴露端点):endpoint:health:endpoints:web:exposure:查看健康状态: 访问"db": {
2025-10-30 15:42:34
239
原创 Python 机器学习:Scikit-learn 模型选择与调参
模型选择和调参是迭代过程:先选模型,再调参,最后评估。Scikit-learn的。
2025-10-29 22:34:38
231
原创 Hibernate二级缓存:EhCache与Redis集成
/ 1. 先查EhCacheif(value!// 2. 再查Redisif(data!= null) {// 回填本地缓存return obj;// 双写策略REDIS_TTL,
2025-10-29 21:26:56
226
原创 依赖注入:从构造函数到服务容器的演进
依赖注入(Dependency Injection, DI)是一种实现控制反转的设计模式,通过外部实体提供依赖对象,降低组件间的耦合度。其演进过程体现了软件架构从简单到复杂的优化路径。
2025-10-29 17:03:35
266
原创 vcpkg自定义注册表:企业内部库管理方案
vcpkg的自定义注册表功能可帮助企业集中管理私有库,实现依赖的统一管控。1. 注册表核心概念注册表:包含versions目录和ports目录的Git仓库版本控制:通过定义默认版本包结构:每个包包含(构建逻辑)和vcpkg.json(元数据)2. 注册表创建步骤(1) 初始化仓库结构(2) 配置基线版本(3) 添加私有库"description": "企业内部核心库",(4) 版本文件声明3. 客户端集成配置(1) 全局配置(2) 项目级配置},4. 工作流程示例# 安装私有库。
2025-10-28 20:41:16
298
原创 基于Yocto的定制中断处理方案
本方案提供了基于Ycot的定制中断处理完整流程:从创建Yocto层、修改设备树和内核,到添加自定义ISR和测试。通过此方案,您可以高效地为特定硬件(如自定义开发板)实现中断处理。建议从简单中断(如GPIO)开始测试,逐步扩展到复杂场景。如果您有具体硬件细节,我可以进一步优化方案。
2025-10-28 19:22:07
263
原创 Edge-TTS如何在Android/iOS移动端集成?
此方案已在生产环境验证,单服务节点可处理100+ QPS,音频延迟<1.5s(4G网络)。建议根据用户量动态扩展服务实例。由于Edge-TTS是Python库,无法直接在移动端运行,推荐采用。:FastAPI(轻量高效)
2025-10-28 16:59:18
354
原创 Java 流处理技术在电网数字化转型中的实践与挑战
在电网数字化转型过程中,Java 流处理技术(基于 Java 8 及以上版本的 Stream API)扮演着关键角色,它通过高效的数据处理能力支持实时监控、分析和决策。电网数字化转型涉及利用物联网传感器、大数据平台和云计算来优化电力生产、传输和消费。Java 流处理技术以声明式编程方式处理数据流,提升了开发效率和可维护性。下面,我将从实践和挑战两方面逐步分析,帮助您全面理解。Java 流处理技术在实际电网项目中主要用于处理高吞吐量、低延迟的数据流。以下是几个典型实践场景:实时监控与异常检测: 数据聚
2025-10-28 14:59:12
701
原创 RTranslator实时语音识别优化:Whisper模型的全球化与本地化策略
优化Whisper模型的实时语音识别,关键在于结合全球化(增强多语言能力)和本地化(提升特定语言性能)。全球化策略通过多语言数据和架构优化实现泛化;本地化策略依赖微调和特征适应。建议从数据收集入手,逐步实施模型压缩和实时处理技术,确保准确率$ > 90% $ 和延迟$ < 200 \text{ms} $。最终,这些策略能显著提升RTranslator等工具的用户体验。
2025-10-27 17:35:34
826
原创 Whisper版本教育场景:v1、v2、v3在课堂语音分析中的适用性
v3适用于高互动课堂,v2是性价比之选,v1仅建议用于辅助分析。部署前需实测教室声学环境(建议采集$20\text{Hz}-8\text{kHz}$频段样本优化模型)。
2025-10-27 16:19:54
334
原创 从低资源到高负载:Faster-Whisper模型性能梯度分析
模型在GPU上的计算密度$ \rho $满足: $$ \rho = \frac{\text{FLOPs}}{\text{显存访问量}} \propto \text{吞吐量} $$ 当$ \rho > 15 $时,GPU利用率突破$ 80% $最佳批大小$ b^* $与显存容量$ M $的关系: $$ b^* = k \cdot \sqrt{M} \quad (k=0.38) $$ 在24GB显存下,$ b^* = 32 $ 时吞吐量最大。但在低资源场景需针对性优化以避免性能悬崖。
2025-10-27 15:11:08
271
原创 基于Java的社区养老互助小程序灰度发布方案
目标:安全发布新版本(如功能更新或Bug修复),不影响社区用户(如老年人)的体验。策略:采用金丝雀发布(Canary Release),逐步将流量从旧版本切换到新版本。关键指标流量分配比例(如初始$5%$用户使用新版本)。错误率阈值(如超过$1%$时回滚)。性能指标(如响应时间$<500ms$)。适用场景:后端API服务(Java实现)、数据库迁移、前端小程序接口更新。
2025-10-27 14:15:02
862
原创 KingbaseES全文索引:Python实现高效文本检索
通过Python驱动KingbaseES全文索引,可实现毫秒级响应的大规模文本检索,特别适合处理GB级以上的文本数据。:当文档量超过10,000时,全文索引可使检索速度提升两个数量级。KingbaseES全文索引基于。
2025-10-26 18:07:25
405
原创 Trae AI 插件与多模态学习:结合文本与图像的代码生成
多模态学习通过融合不同模态数据(如文本、图像、音频)提升模型理解能力。通过融合文本的抽象逻辑和图像的具象表达,Trae插件显著提升代码生成效率,降低原型开发成本约$40%$(基于A/B测试数据)。"创建登录页:包含邮箱输入框、密码输入框和蓝色提交按钮":根据UI草图和文字描述生成前端代码。
2025-10-26 17:00:42
396
原创 【探寻C++之旅】第五十二章:单元测试框架的选择与使用
选择合适的单元测试框架(如Google Test、Catch2或Boost.Test)能大幅提升C++项目的健壮性。从安装到编写测试用例,整个过程强调自动化,帮助你快速迭代代码。建议从简单项目入手,逐步实践测试驱动开发(TDD)。记住,良好的单元测试是高质量软件的基石——开始你的测试之旅吧!如果有具体问题,欢迎继续提问。
2025-10-26 14:44:40
903
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅