- 博客(8)
- 收藏
- 关注
原创 【无标题】
NLP 是Natural Language Processing(自然语言处理)的缩写,它是人工智能(AI)和语言学交叉的核心学科,目标是让计算机 “理解、处理、生成人类语言”,打破人与机器之间的 “语言壁垒”。看懂文字(比如识别新闻主题、提取合同关键信息);听懂语音(比如语音助手识别指令、实时字幕转换);生成文字(比如写邮件、AI 对话、机器翻译);处理语言逻辑(比如回答问题、分析情感倾向)。NLP 的本质是 “让计算机掌握人类语言”,它是 AI 中最贴近人类生活的技术之一。
2026-01-06 13:58:35
604
原创 统计学概念
n场景 2:不确定性量化与预测\n例子:股票价格预测中,用对数正态分布描述股价的连续取值概率;似然函数最大似然函数与生成模型的关系\n似然函数最大似然函数与生成模型的关系\n\n核心结论:似然函数是生成模型建模的核心工具,最大似然估计(MLE)是生成模型学习数据分布的核心优化准则,二者共同支撑生成模型 “还原数据真实分布” 的目标。\n3. 与生成模型的核心关联:从建模到学习的全流程支撑\n生成模型的核心任务是建模数据的概率分布 P(X),而似然函数提供了 “模型分布与数据匹配度” 的量化方式。
2026-01-06 13:57:52
247
原创 图像生成 体验图像生成大模型
近景是一座小巧的石拱桥,桥面由青石板铺成,桥栏雕刻着精美的花纹,桥下是蜿蜒的池塘,池塘水面漂浮着翠绿的荷叶与粉色的荷花。她的面容姣好,柳叶眉,丹凤眼,鼻梁小巧,唇点朱红,神态温婉娴静。别墅的一层设有开阔的露台,露台上摆放着藤制桌椅与遮阳伞,露台边缘设有木质栏杆,可俯瞰下方清澈的湖水与岸边的绿植。天空是淡蓝色的,飘着几朵轻薄的白云,阳光洒在山峰上,勾勒出清晰的轮廓,整体画面气势磅礴,意境悠远。无垠的大海上,海水呈现出层次丰富的蓝色,从近岸的浅蓝逐渐过渡到远处的深蓝,宛如一块巨大的蓝色宝石。
2025-12-26 09:27:07
782
原创 计算机视觉经典模型
设输入为x,期望的映射为H(x),残差块通过学习F(x)=H(x)-x,最终输出为H(x)=F(x)+x(即残差连接)。- 跳跃连接(Shortcut Connection):通过跳跃连接直接将输入x传递到输出端,与卷积层的输出相加,既保留了底层特征,又让梯度能通过短路路径反向传播,缓解了深层网络的梯度消失问题。- 安防与交通:监控摄像头的人脸识别、行为分析、车辆牌照识别,交通领域的违章检测、自动驾驶的环境感知(如目标检测、车道线识别)是CV的核心应用场景。2. 简述CNN模型识别图像中对象的流程。
2025-12-12 09:46:19
249
原创 【无标题】
自注意力(Self-Attention)是一种动态计算输入序列内部元素间关联性权重的机制。典型案例:Google翻译系统切换至Transformer后,翻译质量BLEU值提升60%2。自注意力优势:直接计算任意距离词对的相关性(如句首与句尾词),显著提升语义理解能力12。性能突破:在GLUE基准测试中,Transformer模型比RNN高15%+准确率12。与RNN有何本质区别?预训练语言模型:BERT(双向自注意力)、GPT(自回归自注意力)BERT的双向自注意力与GPT的单向掩码自注意力有何优劣差异?
2025-11-28 10:00:00
260
原创 3.搭建和训练基于线性回归算法预测房价的机器学习模型
plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--') # 添加理想预测线。print(f'模型均方根误差(RMSE): ${rmse:.2f}') # 格式化输出误差值。print('截距项:', model.intercept_) # 基础价格。print('回归系数:', model.coef_) # 每个特征的权重。plt.xlabel('面积(平方英尺)') # X轴标签。plt.ylabel('价格(美元)') # Y轴标签。
2025-10-31 09:41:15
284
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅