自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

原创 LCD屏幕缺陷检测与识别 QueryInst模型训练

本文介绍了基于QueryInst模型的LCD屏幕缺陷检测方法,涵盖模型原理、数据集准备、训练优化及部署应用。QueryInst模型通过查询向量机制实现高效缺陷定位,其多尺度适应性和端到端训练特点特别适合屏幕缺陷检测。文章详细阐述了数据预处理流程(包括归一化、尺寸调整和增强操作)以及模型训练关键参数设置。实验结果显示,该模型在坏点、亮点等缺陷检测上F1值超过90%,但对色彩偏差类缺陷识别仍有提升空间。最后探讨了边缘设备、云端及混合部署方案,并提供了模型量化压缩的代码实现,为LCD屏幕缺陷自动检测系统的开发提供

2025-12-21 14:06:17 653

原创 YOLOv5-AIFI实现桥梁结构缺陷检测与识别教程

本文介绍了基于YOLOv5-AIFI框架的桥梁结构缺陷自动检测方法。该方法通过深度学习技术,高效识别桥梁表面的裂缝、剥落等缺陷,克服了传统人工检测的局限性。文章详细讲解了环境配置、数据集预处理、模型训练优化及部署流程。YOLOv5-AIFI针对小目标和复杂背景优化,提升了缺陷检测精度。实验结果表明,该方法能有效实现桥梁缺陷的自动识别,为工程安全监测提供了高效可靠的解决方案。

2025-12-21 13:35:16 561

原创 水族馆海洋生物目标检测与识别——YOLOv8与RepHGNetV2融合改进应用

本文提出了一种融合YOLOv8与RepHGNetV2的改进模型,用于水族馆海洋生物的目标检测与识别。该方案通过特征提取网络改进、自适应加权融合策略和损失函数优化,显著提升了小目标和复杂背景下的检测精度。实验结果表明,改进模型在保持42FPS实时处理速度的同时,mAP达到0.805,优于原始YOLOv8等主流算法。该技术可应用于智能导览、科研监测和饲养管理,未来可进一步结合多模态信息提升性能。

2025-12-18 09:20:19 778

原创 基于TridentNet的蚂蚁检测与分类系统_COCO数据集训练

本文介绍了一种基于TridentNet深度学习模型的蚂蚁检测与分类系统,该系统采用COCO数据集进行训练。系统架构包含数据预处理、TridentNet模型、训练评估等模块,通过多尺度特征提取和注意力机制优化,实现了87.6%的mAP准确率。实验分析了小目标漏检等主要错误类型,并探讨了该系统在科研和实际应用中的潜力。未来将扩展更多蚂蚁种类检测,优化边缘计算性能。该系统为蚂蚁研究和生态保护提供了高效的技术支持。

2025-12-18 08:41:39 597

原创 森林野生动物智能识别系统_基于YOLO11-C3k2-DySnakeConv的创新应用

本文提出了一种基于YOLO11-C3k2-DySnakeConv的森林野生动物智能识别系统。该系统融合了YOLO11目标检测算法、C3k2轻量化模块和DySnakeConv动态卷积技术,在保持高精度的同时显著提升了检测速度。系统采用前后端分离架构,通过图像增强、模型量化和异步处理等优化技术,实现了对狐狸、大象、老虎等多种野生动物的高效识别。实验结果表明,该系统在复杂森林环境下具有优异的检测性能,支持全天候监测,为野生动物保护提供了可靠的技术支持。

2025-12-17 19:21:56 609

原创 传统建筑轩辕构件识别检测改进RetinaNet_r50-caffe_fpn_1x_coco方法实现

本文提出了一种改进的RetinaNet模型用于传统建筑轩辕构件识别检测。通过优化ResNet-50骨干网络,引入注意力机制和特征金字塔网络改进,模型在轩辕构件数据集上取得了92%的mAP。实验表明,该方法在精度和效率之间取得良好平衡,优于原始RetinaNet和其他对比模型。该技术可应用于古建筑保护、文化遗产数字化等领域,为传统建筑构件的自动识别提供了有效解决方案。未来可结合3D视觉技术和边缘计算进一步优化性能。

2025-12-17 18:49:49 715

原创 玉米籽粒质量检测与分类_基于YOLO13-C3k2-StripCGLU模型的高精度检测方法_1

本文提出了一种基于YOLO13-C3k2-StripCGLU模型的玉米籽粒质量检测与分类方法,通过创新性地结合C3k2模块和StripCGLU激活函数,显著提升了检测精度和效率。实验结果表明,我们的模型在保持较高检测速度的同时,mAP@0.5达到了91.2%,相比原始YOLOv8提升了约5.6个百分点。😊YOLO(You Only Look Once)系列是一种单阶段目标检测算法,具有检测速度快、精度高的特点。YOLO13作为最新版本,在网络结构和检测性能上都有显著改进。

2025-12-12 12:53:28 654

原创 YOLOv5-SPPF-LSKA_家具目标检测系统实现

本文提出了一种基于YOLOv5架构的家具目标检测系统,通过引入SPPF(空间金字塔池化快速)和LSKA(大核注意力)模块优化检测性能。系统采用Furniture-1K数据集(包含10类1000张家具图像),并应用多种数据增强技术提升泛化能力。实验表明,该方法在RTX 3080上达到78.9% mAP@0.5和38FPS的检测速度,优于主流检测算法。通过TensorRT加速和模型轻量化优化,系统可部署于智能家居和零售场景,实现家具识别、布局分析等功能。消融实验验证了SPPF和LSKA模块的有效性,综合提升了检

2025-12-12 12:14:34 933

原创 多肉植物智能识别:YOLOv10n改进模型结合全局边缘信息传递策略详解

本文详细介绍了一种基于YOLOv10n改进模型结合全局边缘信息传递策略的多肉植物智能识别方法。通过引入边缘信息传递策略和自适应特征融合机制,我们的模型在保持较高推理速度的同时,显著提高了多肉植物识别的准确性,特别是在处理形态相似的品种时表现突出。这个系统不仅可以应用于植物爱好者的日常识别需求,还可以集成到园艺管理和智能花盆等实际场景中,为多肉植物的智能化养护提供技术支持。🌵💚未来,我们将继续优化模型性能,扩展识别范围,并探索更多实际应用场景,让多肉植物智能识别技术更好地服务于广大植物爱好者和园艺从业者。

2025-12-08 09:41:24 944

原创 基于Faster R-CNN和RegNetX-4GF的钢筋绑扎点检测与识别系统PyTorch

本文提出了一种基于Faster R-CNN和RegNetX-4GF的钢筋绑扎点检测系统PyTorch实现方案。该系统采用RegNetX-4GF作为骨干网络,结合Faster R-CNN框架实现了对建筑钢筋绑扎点的精准检测。实验结果表明,该方案在自建数据集上达到92.1%的mAP和18FPS的处理速度,相比传统ResNet模型在精度和效率上均有显著提升。通过消融实验验证了FPN改进、注意力机制和损失函数优化等模块的有效性,为建筑行业提供了一种高效可靠的自动化检测解决方案。

2025-12-04 11:36:25 864

原创 YOLOv3+MobileNetV2实现后座安全带检测系统:高精度实时监控方案_1

本文介绍了一种基于YOLOv3+MobileNetV2的后座安全带检测系统,通过深度学习技术实现高精度实时监控。系统采用轻量级MobileNetV2作为YOLOv3的骨干网络,在保证检测精度的同时提高推理速度。详细阐述了环境配置、模型架构(结合YOLOv3的检测能力和MobileNetV2的高效特征提取)、数据集准备和模型训练过程。系统评估指标显示,该方案在NVIDIA Jetson等嵌入式设备上能达到15FPS以上的实时性能,功耗仅10W,适用于车载智能监控场景,对提升行车安全具有重要意义。

2025-12-04 10:58:22 581

原创 露天矿场工程设备识别与作业状态分析——yolov5-ContextGuidedDown实战指南

本文提出了一种基于改进YOLOv5算法的露天矿场工程设备识别与作业状态分析方法。通过引入ContextGuidedDown模块,有效解决了传统下采样中上下文信息丢失的问题,显著提升了模型性能。实验结果表明,改进后的YOLOv5s模型mAP@0.5达到84.1%,比原模型提升5.2个百分点。系统已在实际矿场中应用,对挖掘机、装载机等设备的识别准确率超过90%,作业状态分析准确率达87.5%。该方法为矿场智能化管理提供了有效的技术支持,未来可通过轻量化设计和多模态融合进一步优化性能。

2025-12-02 13:21:40 1013

原创 基于YOLOv11改进模型的脐橙成熟度图像分割方法

本文提出了一种基于改进YOLOv11模型的脐橙成熟度图像分割方法。针对传统人工检测效率低、主观性强的问题,研究通过引入注意力机制和优化损失函数(混合交叉熵和Dice损失)对YOLOv11模型进行改进。实验结果表明,改进模型在5000张脐橙图像数据集上表现出色,平均F1分数达0.935,IoU为0.890,显著优于标准模型。该系统可应用于果园采收决策、分级包装等场景,为智能农业提供可靠解决方案。未来将探索模型轻量化、多任务学习等方向,以进一步扩展应用范围。

2025-12-02 12:43:07 901

原创 配电箱蓄电池检测_-_基于RetinaNet模型的电池识别系统

本文提出了一种基于改进RetinaNet的配电箱蓄电池自动检测系统。通过优化特征金字塔网络(FPN)结构,引入自适应特征融合模块(AFFM)和跨尺度特征增强模块(CFEM),显著提升了模型对小目标的检测性能。同时,采用自适应学习率调度和梯度裁剪技术,使大批次训练更加稳定高效。实验结果表明,改进后的模型mAP达到89.2%,比原始RetinaNet提升6.7个百分点,检测速度达到22FPS,训练时间减少38%。该系统已成功应用于电力巡检场景,实现了92%的实际检测准确率,有效提升了配电箱蓄电池检测的自动化水平

2025-11-28 15:46:18 834

原创 YOLOv8-seg-RepVit稻米品质自动分类与分级系统实现

本文介绍了一种基于YOLOv8-seg和RepVit的稻米品质自动分类与分级系统,通过深度学习技术实现了稻米品种识别、品质分级和缺陷检测等功能。实验结果表明,该系统具有较高的检测精度和较快的处理速度,能够满足实际应用需求。🎉多模态融合:结合近红外光谱等技术,提高稻米内部品质的检测能力。边缘计算部署:将模型部署到边缘设备,实现现场检测,减少数据传输延迟。自适应学习:引入在线学习机制,使系统能够不断适应新的稻米品种和品质标准。

2025-11-24 11:23:05 840

原创 棉花目标检测与识别:基于DINO-5scale和Swin-L的高效检测模型_1

本文提出了一种基于DINO-5scale和Swin-L的棉花目标检测模型,该模型结合Transformer和CNN优势,有效解决了棉花病虫害检测中的尺度变化、背景复杂等挑战。实验表明,该模型在mAP指标上显著优于主流算法,特别是小目标检测性能提升9.6个百分点,同时保持了18.6FPS的推理速度。模型通过Swin-L骨干网络提取多尺度特征,结合FPN特征融合和DINO-5scale多尺度检测机制,实现了对不同尺寸棉花目标的精准识别,为农业自动化监测提供了高效解决方案。

2025-11-22 10:19:51 48

原创 基于DETR的棉花异性纤维智能检测与分类系统_r50_8xb2-500e_coco实现

本文提出了一种改进DETR算法用于棉花异性纤维检测与分类。针对传统DETR的局限性,设计了多尺度特征融合注意力(MSFFA)、空间-通道双重注意力(SCDA)和层次化注意力机制(HAM),并改进了损失函数(类别平衡交叉熵损失和自适应焦点损失)。实验结果表明,改进算法在自建数据集上mAP达到90.3%,相比原始DETR提升8.0%,各类别检测性能均有显著提高,同时保持22.3ms/张的推理速度,满足实时检测需求。

2025-11-22 09:41:49 30

原创 卷烟包装缺陷检测__改进算法详解——yolo11-C3k2-MobileMamba应用研究

我们提出的改进算法结合了YOLO11的目标检测能力、C3k2特征融合模块以及MobileMamba的序列建模优势,形成了一套针对卷烟包装缺陷检测的专用解决方案。本文详细介绍了一种改进的YOLO11-C3k2-MobileMamba算法,该算法针对卷烟包装缺陷检测任务进行了优化。通过引入C3k2特征融合模块和MobileMamba序列建模能力,结合YOLO11的目标检测框架,我们显著提高了对小目标缺陷的检测精度。

2025-11-20 12:16:02 399

原创 ACO三维路径规划基于matlab_GUI蚁群算法无人机三维路径规划含Matlab源码_22期

本文研究了无人机航迹规划问题,提出了一种改进的A算法与蚁群算法相结合的优化方法。首先介绍了无人机路径规划的重要性,指出传统手动控制存在操作风险,合理规划航迹对飞行安全至关重要。文章分析了A算法和蚁群算法的原理:A算法通过栅格化区域简化计算,而蚁群算法模拟蚂蚁觅食行为,通过信息素反馈寻找最优路径。研究将两种算法结合,在MATLAB中实现了航迹规划仿真,通过高度矩阵处理地形数据。该混合算法充分发挥了A算法的计算效率和蚁群算法的全局优化能力,为无人机提供更安全、高效的航线规划解决方案。

2025-11-05 15:08:32 1623

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除