- 博客(23)
- 收藏
- 关注
原创 基于YOLO11-CA-HSFPN的人体姿态识别与姿势分类改进方法详解
人体姿态识别作为计算机视觉的重要分支,旨在通过图像或视频检测人体关键点并分析人体姿态。这项技术在体育分析、医疗康复、人机交互等领域有着广泛应用。传统的人体姿态识别方法主要分为自顶向下(Top-Down)和自底向上(Bottom-Up)两类方法,而基于YOLO11的改进方法则结合了两者的优势,实现了更高的检测精度和更快的处理速度。人体姿态识别的核心任务包括人体检测、关键点定位和姿势分类三个步骤。其中,人体检测是基础,准确的人体检测框为后续的关键点定位提供了精确的搜索区域。
2025-12-25 09:34:56
909
原创 改进SOLOv2系列__R50_FPN_1x_COCO__建筑工地车辆与人员目标检测
本文提出了一种针对建筑工地车辆与人员检测的改进SOLOv2模型。通过优化特征金字塔网络(FPN)结构,增加多尺度特征融合和通道注意力机制,有效提升了模型对小目标和复杂背景的识别能力。针对工地场景的特殊性,设计了自适应focal loss函数,动态调整难易样本权重,显著改善了遮挡和相似背景下的检测效果。训练策略采用改进的余弦退火学习率调度,结合线性warmup和长稳定期设计,使模型在工地多变场景中表现更稳定。实验表明,该方法在建筑工地目标检测任务中具有较高的准确率和鲁棒性,为智能施工监控和安全管理系统提供了可
2025-12-25 09:06:20
1039
原创 羽毛球运动员姿势识别与分类_基于Fovea_R101_FPN_GN-Head-Align模型研究
本文提出了一种基于改进Fovea R101 FPN GN-Head Align模型的羽毛球运动员姿势识别与分类方法。针对羽毛球运动动作快速、姿态复杂的特点,研究团队构建了包含10,000张标注图像的专业数据集,涵盖12种常见技术动作。通过对原始FoveaBox模型进行优化,增加了时序refinement模块,显著提升了识别精度(mAP达91.6%)。实验结果表明,该方法在扣杀等快速动作上的识别准确率达95.3%,在主流GPU上推理速度达83fps,可满足实时分析需求。该技术可应用于智能训练系统、体育装备等领
2025-12-19 09:32:43
636
原创 角膜炎和葡萄膜炎的自动检测与分类_YOLOv10n-StarNet实现
本文介绍了一种基于YOLOv10n-StarNet架构的角膜炎和葡萄膜炎自动检测分类系统。该系统采用两阶段方法:YOLOv10n用于病灶区域检测,StarNet进行精确分类。通过2000张专业标注的眼部影像数据集训练,系统实现了96.2%的平均准确率和45ms/图的处理速度。实验表明,该系统在准确率、召回率等关键指标上表现优异,能辅助医生进行早期病变识别。系统采用Python+PyTorch实现,可部署在普通PC上,具有临床应用价值。
2025-12-19 08:48:54
643
原创 睿智的施工现场检测11YoloV3-C3k2改进模型实现设备与人员识别
本文提出了一种改进的YoloV3-C3k2模型用于施工现场设备与人员识别。通过引入C3k2模块、优化特征金字塔网络和改进损失函数,模型在BRE 567数据集上实现了82.7%的mAP,相比原始YoloV3提升10.4%。消融实验验证了各改进点的有效性,特别是C3k2模块带来4.2%的性能提升。该模型在复杂环境下仍保持良好表现,推理速度达41FPS,满足实时检测需求,为施工现场安全监测提供了有效的智能化解决方案。
2025-12-18 23:00:10
891
原创 基于yolov8-fasternet-bifpn的食品瓶罐包装缺陷检测与分类
本文提出了一种基于YOLOv8-FasterNet-BiFPN的食品瓶罐包装缺陷检测方法。该方法结合YOLOv8的高效检测能力、FasterNet的轻量级特征提取和BiFPN的双向特征融合优势,实现了对5类常见包装缺陷的快速准确检测。实验表明,该模型在保持较高精度(mAP@0.5达0.911)的同时,推理速度提升28.9%,模型体积减小29.4%,适合工业部署。实际生产线测试显示,系统检测速度达30FPS,能有效识别瓶盖密封不严、标签贴歪等缺陷,显著提升了质检效率和准确性。
2025-12-18 22:11:56
926
原创 农业大棚材质识别与分类全流程:从数据采集到模型部署的实战指南
农业大棚材质识别系统通过计算机视觉技术实现不同材质大棚的分类。系统采用无人机航拍和地面拍摄相结合的方式采集数据,经过图像预处理(调整大小、直方图均衡化、对比度增强)后,使用EfficientNet模型进行特征提取和分类。模型训练过程中应用数据增强技术提高泛化能力,最终实现了高效准确的材质识别。该系统为农业管理、大棚建设和科研提供了智能化解决方案,具有较高的实用价值。
2025-12-16 10:30:58
1500
原创 YOLO11-AIFI重型设备检测与识别--建筑工地十类设备自动定位_1
本文提出了一种基于YOLO11-AIFI的重型设备检测系统,通过引入注意力机制改进YOLO11模型,提升了对建筑工地10类重型设备的检测性能。研究构建了包含5000张图像的数据集,涵盖挖掘机、起重机等设备,采用多尺度训练和标签平滑技术优化模型。实验表明,该方法在复杂场景下对小目标和遮挡设备具有更好的检测效果,为智能工地建设提供了有效的技术方案。
2025-12-16 09:57:46
708
原创 【深度学习实战】基于YOLO11-C3k2-iRMB-SWC的苜蓿与杂草智能识别系统——农业精准除草新突破
本文详细介绍了一种基于YOLO11-C3k2-iRMB-SWC架构的苜蓿与杂草智能识别系统。通过改进网络结构和引入新的注意力机制,系统实现了对苜蓿田中杂草的高效准确识别,为精准农业提供了技术支持。多模态融合:结合RGB和近红外图像,提高在复杂光照条件下的识别精度3D视觉技术:引入深度信息,实现杂草的立体定位自适应学习:使系统能够根据不同地区的杂草特点自动调整模型参数机器人集成:与除草机器人结合,实现从识别到除草的全自动化。
2025-12-13 13:37:30
847
原创 基于Faster-RCNN与HRNet的晶圆表面缺陷检测与分类系统详解
本文介绍了一种基于Faster-RCNN与HRNet的晶圆表面缺陷检测与分类系统。该系统克服了传统方法在晶圆缺陷检测中的局限性,利用深度学习的自动特征学习和高分辨率表示能力,显著提升了检测精度。Faster-RCNN作为两阶段检测框架提供高质量候选区域和分类能力,HRNet则保持高分辨率特征以捕捉微小缺陷细节。实验结果表明,该系统在mAP和准确率指标上均优于传统方法,同时通过模型优化实现了高效推理。该系统为半导体制造中的晶圆缺陷检测提供了高效解决方案。
2025-12-10 14:49:35
1049
原创 牛跛行运动特征中肿胀关节的检测与识别_yolo13-seg-RVB_1
本文介绍了一种基于YOLO13-seg-RVB模型的牛关节肿胀检测与识别系统。通过改进模型架构、引入RVB注意力机制和设计多任务损失函数,我们实现了对牛关节肿胀的高精度检测与分割。实验结果表明,该方法在自建数据集上取得了优于主流方法的性能。多模态融合:结合热成像和RGB图像,提高检测准确性。3D重建:利用多视角信息重建牛只关节的三维模型,更全面评估肿胀情况。迁移学习:将模型扩展到其他动物关节疾病的检测,提高系统的通用性。
2025-12-08 12:17:53
772
原创 基于YOLO11-C3k2-WTConv的手术器械识别与分类系统研究
本文提出了一种基于改进YOLOv11架构的手术器械识别与分类系统,通过引入C3k2模块和WTConv卷积核,有效提升了模型在复杂医疗环境下的识别精度。实验结果表明,该系统在mAP指标上比传统YOLOv11模型提升5.2个百分点,同时保持30FPS的实时检测速度,满足手术机器人应用需求。该系统已成功应用于腹腔镜、神经外科等手术场景,准确识别各类手术器械。未来将探索多模态信息融合和自适应学习能力,进一步提升系统性能。该研究为智能医疗领域的手术器械识别提供了有效解决方案。
2025-12-08 11:45:03
769
原创 基于改进YOLO11-GhostHGNetV2的零售商品自动检测与分类系统详解
本文提出了一种基于改进YOLO11-GhostHGNetV2的零售商品自动检测与分类系统。该系统通过引入Ghost模块和层次化网格结构,显著提升了检测效率,在保持95%原始性能的同时减少了40%计算量。GhostHGNetV2采用多尺度特征融合技术,有效解决了零售场景中商品尺寸差异大的问题。实验表明,该系统在10万张商品图像数据集上达到92.3%的mAP,比原模型提升3.5%,推理速度提高25%,模型大小减小40%,适用于边缘设备部署。系统采用分布式训练和数据增强策略,为零售业数字化转型提供了高效的自动化解
2025-12-04 15:43:39
790
原创 基于Faster R-CNN的工业树脂涂层质量检测系统_2
本文提出了一种基于Faster R-CNN的工业树脂涂层质量检测系统,针对工业质检中常见的长尾分布问题(80%正常样本,20%缺陷样本)进行了深入分析。系统采用多种数据增强方法(几何变换、噪声添加等)和采样策略(过采样、欠采样、函数加权)来缓解数据不平衡问题。文章详细介绍了PyTorch中的实现方法,包括加权采样器和带权重的损失函数,并提出了数据分布平滑和阈值移动等改进方法。系统界面展示了登录管理和模型训练功能,为工业环境中的实际应用提供了可靠解决方案。
2025-12-04 15:02:19
1014
原创 【植物识别】基于YOLOv10n的夹竹桃检测系统研究与实现
本文详细介绍了一个基于YOLOv10n的夹竹桃检测系统的完整实现过程。从数据集构建、模型训练到系统部署,我们展示了一个完整的计算机视觉项目流程。实验结果表明,该系统在精度和速度方面都取得了良好的性能,能够满足实际应用需求。在项目实施过程中,我们深刻体会到数据质量对模型性能的决定性影响,以及模型选择与实际应用场景匹配的重要性。YOLOv10n作为轻量级目标检测模型,在保持高精度的同时,显著降低了计算复杂度,非常适合资源受限的部署环境。未来,我们将继续优化系统性能,拓展应用场景,并探索更先进的深度学习技术。
2025-12-02 15:08:40
551
原创 【海洋检测系列】:基于YOLOv8-FocalModulation的海洋涡流检测与识别详解
本文介绍了一种基于YOLOv8-FocalModulation的海洋涡流检测与识别方法。针对传统检测方法效率低、主观性强的问题,该技术通过引入FocalModulation机制,使模型能够自适应调整特征权重,显著提升了检测精度。文章详细阐述了模型架构、数据集构建、训练优化策略及实验结果,显示该方法在mAP指标上比传统模型提高2-4个百分点,同时保持较高推理速度。实际应用案例表明,该系统已成功用于海洋环境监测、航运安全预警等多个场景,具有重要的科研和实用价值。未来将进一步优化模型结构,探索多模态融合和边缘计算
2025-12-02 14:40:33
833
原创 基于Mask-RCNN的马匹检测与识别系统:R50-contrib-FPN-GN模型训练与部署
本文提出了一种基于Mask-RCNN的马匹检测与识别系统,采用ResNet50-FPN骨干网络结合组归一化(GN)构建高效模型。系统实现了从数据准备、模型训练到部署的全流程:1) 使用1000张标注马匹图像,通过随机翻转和归一化增强数据;2) 采用两阶段训练策略,先冻结骨干网络训练头部,再微调整个网络;3) 使用多任务损失函数优化模型;4) 通过TensorRT加速部署到边缘设备。实验表明该系统能有效检测不同尺寸马匹,但对遮挡情况识别有待改进。未来可引入注意力机制提升遮挡识别能力。
2025-11-29 10:54:06
751
原创 YOLOv10n-EfficientRepBiPAN_基于深度学习的大米缺陷检测与分类系统实现_1
基于YOLOv10n-EfficientRepBiPAN的大米缺陷检测系统摘要 本文提出了一种新型大米缺陷检测系统,采用YOLOv10n-EfficientRepBiPAN深度学习架构,实现高效准确的大米质量评估。系统包含五大核心模块:图像采集、预处理、检测、分类和结果展示。重点介绍了数据集处理模块的设计与实现,包括面向对象架构、标准化处理流程和严格验证机制。该模块支持多种数据集格式,通过自动化验证、清洗和优化流程确保数据质量,为模型训练奠定基础。系统特别设计了结构验证和YAML文件处理功能,保障数据集完整
2025-11-29 10:13:07
607
原创 【离岸流检测】基于YOLOv8的海洋危险区域识别算法改进_LAWDS
本文提出了一种基于YOLOv8改进的离岸流检测算法LAWDS,通过轻量级特征提取模块、自适应注意力机制和改进后处理策略,显著提升了检测性能。实验表明,LAWDS在精确率、召回率和mAP等指标上优于现有算法,召回率提升12%,mAP达到0.813。该系统已成功部署于多个海滩景区,使溺水事故减少60%。未来研究将聚焦多尺度检测优化、时序信息利用和轻量化部署,进一步提高检测准确性和实用性。
2025-11-24 12:36:52
71
原创 水稻稻穗目标检测 - 基于YOLOv8和LSKNet的改进方法
本文提出了一种基于YOLOv8和LSKNet改进的水稻稻穗目标检测方法。研究采用包含4735张图像的数据集,通过水平翻转和随机旋转(-15°至+15°)进行数据增强。改进模型在自然稻田环境下表现出色,能有效检测不同生长状态的稻穗,为农业自动化监测和作物生长分析提供了有效工具。该方法在深度学习目标检测领域具有应用价值,特别适用于农业AI场景。
2025-11-22 13:39:28
66
原创 雾天环境下多类别车辆与行人目标检测:基于FCOS-HRNetV2P的改进模型研究_1
本文针对雾天环境下车辆与行人检测的挑战,提出了一种基于FCOS-HRNetV2P的改进模型。研究设计了融合框架,结合anchor-free检测和高分辨率特征表示,并引入特征增强模块处理雾天图像模糊问题。通过构建包含6类目标的10,000张雾天数据集,实验表明该模型在mAP指标上达到78.6%,优于主流方法。研究还进行了轻量化设计和部署优化,使模型兼具精度与实用性,为智能驾驶和安防监控系统提供了有效的雾天目标检测解决方案。
2025-11-22 13:09:35
50
原创 【自动驾驶】基于YOLOv8-RGCSPELAN的车辆识别与分类系统_1
本文提出了一种基于RGCSPELAN的YOLOv8改进算法,通过残差Ghost卷积、空间金字塔池化和高效层注意力机制的有机结合,显著提升了车辆识别与分类的性能。实验结果表明,改进后的算法在BDD100K数据集上取得了0.871的mAP@0.5,同时保持了62.8 FPS的推理速度,具有良好的实时性和准确性。进一步优化网络结构,减少计算量和参数量,适应边缘设备部署。探索更先进的注意力机制,提升模型对复杂场景的适应能力。结合多模态信息(如激光雷达、毫米波雷达数据),提升检测精度和鲁棒性。
2025-11-20 14:04:51
695
1
原创 YOLOv8超参数优化与海冰检测实战详解三天入门到精通
本文介绍了YOLOv8目标检测技术的超参数优化方法及其在海冰检测中的应用。主要内容包括:1) YOLOv8基础架构和训练流程;2) 关键超参数设置与优化策略,如学习率调整、批大小选择和数据增强技术;3) 正则化方法在提升模型泛化能力中的应用。通过图像识别系统界面示例,展示了该技术在多种输入源下的处理能力,并指出其适配海冰检测任务的潜力。文章旨在帮助读者在三天内快速掌握YOLOv8的核心优化技术,并将其应用于实际场景。
2025-11-20 13:28:52
637
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅