自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 Cascade R-CNN模型实现气胸检测与定位任务

摘要: 本文提出一种改进的Cascade R-CNN模型用于气胸检测与定位,通过跨尺度注意力模块(CSAM)和特征增强融合层(FEFL)提升检测精度,尤其针对小型气胸区域。模型在3800张胸部X光片数据集上训练,采用多阶段IoU阈值动态调整策略,最终mAP@0.5达0.892,较基准模型提升5.7%。实验显示该模型与放射科医师诊断结果高度一致(Kappa=0.77),单图检测仅需0.15秒,具有显著临床应用价值。项目代码和数据集已开源,为医疗影像AI研究提供可靠技术方案。

2026-01-07 21:12:06 659

原创 基于改进DINO-4scale模型的棉田作物生长监测与识别系统研究

本研究提出了一种基于改进DINO-4scale模型的棉田作物生长监测系统。该系统通过优化模型结构,引入注意力机制和多尺度特征融合,显著提高了识别准确率。实验表明,系统在晴天条件下达到94.2%的准确率和91.7%的mAP值,优于传统方法。系统采用微服务架构,支持实时监测、异常预警和生长评估等功能,为精准农业提供了智能化解决方案。研究结果表明,改进后的模型能有效适应复杂田间环境,为棉花生长监测提供了新的技术途径。

2026-01-07 20:39:20 797

原创 交通标志识别与分类改进_YOLOv13融合C3k2与IDWB模块提升红绿灯及限速标志检测效果_原创

本文提出了一种改进YOLOv13模型的方法,通过融合C3k2和IDWB模块提升交通标志识别效果。C3k2模块结合多尺度卷积增强小目标特征提取能力,IDWB模块利用动态权重机制优化特征融合。实验表明,改进后的模型在红绿灯和限速标志检测任务中mAP达到0.891,优于原YOLOv13和其他版本。该方法已成功应用于智能驾驶辅助、交通监控和导航系统。未来将进一步优化模型轻量化、多模态融合和自适应学习能力,以适应复杂交通场景需求。

2026-01-04 19:07:06 607

原创 【人工智能】基于YOLO11-C3k2-LFE模型的LED灯目标检测与识别系统研究

本研究提出了一种基于改进YOLO11的LED灯目标检测系统(YOLO11-C3k2-LFE),通过引入多尺度卷积和注意力机制的C3k2-LFE模块提升检测性能。实验在NVIDIA RTX 3090硬件平台上进行,采用640×640输入尺寸、16批次大小和300训练轮数等参数配置。通过对比YOLOv5、YOLOv7、YOLOv8等模型,验证了改进模块的有效性。系统实现了高效的LED灯检测与识别,为工业质检等应用提供了解决方案。

2026-01-04 18:37:29 1020

原创 YOLO11实现眼镜检测与分割技术详解

本文详细介绍了基于YOLO11的眼镜检测与分割技术实现。YOLO11采用改进的CSPDarknet作为Backbone网络,结合PANet特征融合和一体化检测分割Head,通过单次前向传播完成目标检测和语义分割。文章涵盖了模型架构解析、数据准备(包括多样化的图像采集和精确标注)、数据增强策略以及模型训练优化方法,重点讲解了复合损失函数设计、多尺度训练等关键技术。实验结果表明,YOLO11在保持高精度的同时显著提升了处理速度,适用于安防监控、智能零售等实时应用场景。

2026-01-02 12:29:10 849

原创 玻璃瓶检测与识别篇:YOLOv13-C3k2-MogaBlock模型改进详解

本文提出了一种改进的YOLOv13-C3k2-MogaBlock模型,针对玻璃瓶检测任务进行优化。针对原C3k2模块特征表达能力有限、空间处理不足等问题,新模型引入多尺度特征融合和双重注意力机制(通道+空间),显著提升了模型对玻璃瓶透明、反光等特征的提取能力。实验表明,改进模型在玻璃瓶检测任务上mAP达到85.6%,较原模型提升13.3%,推理速度仅下降5.2%。通过渐进式训练和针对性数据增强,模型在实际工业环境中检测准确率达92.3%,有效解决了玻璃瓶检测中的尺度变化、遮挡和反光等挑战。

2026-01-02 11:59:59 1025

原创 如何使用Yolo11-seg-Bifpn实现人员跌倒检测系统_1

本文介绍了基于YOLO11-Seg-BiFPN模型的人员跌倒检测系统实现方法。系统通过视频采集、模型推理和警报触发三部分构成,核心是改进的YOLO11模型,结合BiFPN特征融合和分割能力提升检测精度。文章详细阐述了环境配置、数据集准备、模型训练和评估流程,并提供了实时检测系统的实现代码。实验表明该模型在精确率、召回率和mAP指标上优于其他对比模型。最后还提出了通过引入姿态估计进一步优化算法的思路。该系统在养老监护等领域具有重要应用价值。

2025-12-29 10:50:14 606

原创 YOLOv10-Fasternet实现汽车轮毂与螺栓自动检测与识别系统

本文介绍了基于ATSS算法的汽车轮毂与螺栓智能检测系统。从数据集准备(COCO格式标注)、模型选择(ATSS算法的自适应训练样本选择策略),到模型训练配置(ResNet101+FPN网络结构)和性能优化(数据增强、损失函数调优等)进行了详细讲解。该系统在汽车制造质检和维修服务等场景中应用效果显著,检测准确率达98.5%。文章还提供了完整项目资源获取链接,并探讨了3D检测技术和多模态融合等进阶优化方向。

2025-12-20 12:11:30 733

原创 YOLOv10n模型在工业设备螺栓与扳手检测识别中的应用与优化

本文探讨了YOLOv10n模型在工业设备螺栓与扳手检测中的应用与优化。该模型通过改进的CSP结构、SPPF模块和特征融合机制,显著提升了检测精度和速度。研究采用多种数据增强策略构建数据集,并运用知识蒸馏、模型剪枝等优化方法,使模型在保持95.2% mAP的同时,推理速度达55FPS,模型大小仅8.3MB。实验表明,YOLOv10n在工业检测任务中优于其他YOLO变体,适用于边缘设备部署。未来可进一步优化小目标检测和多模态融合技术。

2025-12-20 11:33:30 794

原创 蓝莓果实检测与识别:基于改进的solo_r50_fpn模型实践

本文介绍了基于改进solo_r50_fpn模型的蓝莓果实检测方法。通过引入注意力机制和优化特征金字塔结构,显著提升了密集果实和小目标的检测精度。构建了包含5000张标注图像的数据集,采用余弦退火学习率策略和定制损失函数进行训练优化。实验结果显示,模型mAP达到0.86,召回率0.89,并成功应用于智能采摘和产量预测等场景。经轻量化处理后,模型体积缩减90%,推理速度提升3倍,验证了该方案在农业智能化中的实用价值。

2025-12-19 20:11:25 660

原创 基于无人机航拍图像的水上漂浮物体检测:使用SSD512改进模型实现桨板自动识别与定位_PISA_COCO数据集应用_3

摘要: 本文提出一种改进的SSD512模型,用于无人机航拍图像中的水上漂浮物体(特别是桨板)检测。针对复杂水面环境下的检测挑战,模型引入特征金字塔网络(FPN)增强多尺度特征融合,结合SE注意力机制提升目标区域关注度,并采用Focal Loss优化难样本训练。实验基于PISA_COCO数据集(含桨板、救生圈等4类目标),通过数据增强和归一化预处理提升模型鲁棒性。该方法有效解决了小目标检测、环境干扰和实时性需求等关键问题,为水上活动监控和智能水域管理提供了技术支撑。

2025-12-17 09:10:51 805

原创 铝箔与铝制品自动检测:基于YOLO13-C3k2-ConvFormer的智能分类系统详解

基于YOLO13-C3k2-ConvFormer的铝箔与铝制品智能分类系统,通过结合最新的计算机视觉技术和深度学习算法,实现了对铝制品缺陷的高效、准确检测。该系统已在多家铝制品企业成功应用,显著提高了产品质量和生产效率。多模态融合:结合可见光、红外和X射线等多模态数据,提高对内部缺陷的检测能力。小样本学习:研究如何利用少量样本训练有效的检测模型,解决某些罕见缺陷样本不足的问题。自监督学习:探索无监督和自监督学习方法,减少对标注数据的依赖。持续学习:实现模型的在线学习和更新,适应新产品和新缺陷类型的出现。

2025-12-16 20:17:49 936

原创 基于Mask R-CNN的AGV识别与定位系统_r101_caffe_fpn模型优化

本文提出了一种基于Mask R-CNN的AGV识别与定位系统优化方案,重点针对r101_caffe_fpn模型进行了多方面的改进。通过特征提取网络优化(深度可分离卷积、通道剪枝)、特征金字塔网络改进(自适应特征融合、注意力机制)、区域提议网络优化(锚框策略调整)以及模型蒸馏与量化等技术,在保持识别精度的同时显著提升了系统性能。实验结果表明,优化后的模型检测准确率达95.6%,推理速度提升近4倍,模型大小减少66%,成功应用于智能仓储和制造业生产线场景,有效提高了物流效率和空间利用率。该系统为工业自动化中的A

2025-12-16 19:34:07 637

原创 苹果叶片病害检测与分类:Yolo11-C3k2-iRMB-Cascaded模型创新应用详解

本文提出了一种改进的YOLO11-C3k2-iRMB-Cascaded模型用于苹果叶片病害检测。该模型通过引入C3k2模块增强特征提取能力,采用iRMB模块实现轻量化设计,并结合Cascaded结构提高检测精度。实验表明,该模型在保持轻量化的同时(参数量减少40%),检测精度显著提升(mAP达92.3%),优于YOLOv5等主流模型。研究使用包含5种常见病害的10,000张图像数据集,通过数据增强和优化训练策略,实现了高效准确的苹果病害自动检测,为智慧农业提供了实用解决方案。

2025-12-14 16:31:11 1040

原创 Apex游戏角色与物体检测任务_YOLOX_S模型训练与优化_1

本文介绍了使用YOLOX_S模型进行Apex游戏角色与物体检测的全流程。首先详细讲解了数据集构建与预处理方法,包括VOC格式到YOLO格式的转换,以及使用Albumentations库实现数据增强策略。然后深入解析了YOLOX_S模型架构,包括CSPDarknet主干网络、FPN+PAN特征融合和解耦头设计,并提供了模型配置参数说明。最后概述了训练流程优化要点,如学习率调度和数据增强策略。该方案为游戏目标检测任务提供了轻量高效的技术实现路径。

2025-12-14 16:01:39 1033

原创 YOLOv5酒类产品价格标签与商品检测系统研究

本文基于YOLOv5算法开发了一套酒类产品价格标签与商品检测系统,通过优化网络结构和训练策略实现高精度检测。系统采用改进的YOLOv5s模型,结合CSP结构、SPPF模块和Focus模块等创新设计,显著提升了检测性能。实验结果表明,该系统在复杂场景下仍保持较高准确率和实时性,mAP@0.5达到92.3%,推理速度达45FPS。研究收集了包含10,000张酒类产品图像的数据集,涵盖白酒、红酒、啤酒、洋酒和价格标签5个类别,采用多种数据增强策略提升模型泛化能力。该系统为零售业自动化提供了有效解决方案,具有重要的

2025-12-11 13:32:32 577

原创 改进YOLOv8结合跨尺度多头自注意力机制实现野火烟雾检测

本文提出了一种改进YOLOv8模型,结合跨尺度多头自注意力机制(CSMHSA)的野火烟雾检测方法。针对烟雾检测中存在的低对比度、小目标和多尺度变化等挑战,研究在YOLOv8基础上引入CSMHSA模块,通过并行处理多个注意力头并融合跨尺度特征,显著提升了模型性能。实验表明,改进后的模型mAP达到89.9%,较原始YOLOv8提升3.2%,同时在边缘设备部署中保持25FPS的实时检测速度。该研究为复杂环境下的野火早期预警提供了有效的技术方案,未来可进一步探索多模态融合和轻量化方向。

2025-12-11 12:59:12 1012

原创 YOLO12-PGI电梯按钮检测与识别_1

电梯按钮检测系统基于YOLO12-PGI算法实现,该算法融合了YOLOv12的检测框架与PGI(Partial Gradient Integration)模块。PGI模块通过部分梯度整合机制,有效缓解了深层网络中梯度消失问题,显著提升了小目标(如电梯按钮)的检测精度。算法采用多尺度特征融合策略,在640×640输入分辨率下,通过Backbone网络提取不同层级的特征图,经Neck部分进行特征增强后,由Head部分完成类别预测和位置回归。损失函数采用CIoU Loss优化边界框定位,配合Focal Loss解

2025-12-08 19:51:38 882

原创 改进YOLOv10n坦克目标检测添加RevCol注意力机制原创

本文提出了一种改进YOLOv10n坦克目标检测的方法,通过集成RevCol注意力机制提升模型性能。实验结果表明,该方法在军事目标检测数据集上使mAP@0.5提升3.8%至82.3%,FPS仅下降5帧。RevCol机制通过反转通道相关性增强关键特征,在复杂背景和小目标检测场景表现尤为突出。文章详细介绍了模型架构修改、实现步骤和训练策略,并展示了实际军事应用中的优异表现。该方法在保持实时性的同时显著提高了检测精度,为军事目标识别提供了有效解决方案。

2025-12-08 19:22:18 572

原创 零售和消费品领域促销标志检测:基于YOLOv5和RepHGNetV2的自动识别与定位_1

本文提出了一种基于YOLOv5和RepHGNetV2的零售促销标志自动检测方法。通过改进骨干网络和检测头设计,结合数据增强和优化策略,在8601张图像的数据集上实现了92.3%的mAP,推理速度达28FPS。实验表明,该方法优于主流检测算法,能准确识别展示促销、价格折扣和数量促销三类标志,具有实际应用价值。未来可探索轻量化网络和小样本学习以进一步提升性能。

2025-12-05 14:37:20 613

原创 手术器械实例分割与识别_RetinaNet_PVT-L_FPN模型详解_1

本文提出了一种基于RetinaNet、PVT-L和FPN的手术器械实例分割模型。针对医疗图像中器械尺寸变化大、形状各异、存在遮挡等特点,该模型通过PVT-L骨干网络提取全局特征,结合改进的FPN结构实现多尺度特征融合,并采用RetinaNet的Focal Loss解决样本不平衡问题。实验结果表明,该模型能有效处理手术器械分割任务,在复杂场景下仍保持较高精度。文章详细阐述了网络架构设计、损失函数优化及训练策略,为医疗影像分析提供了新的技术方案。

2025-12-05 14:08:07 704

原创 药丸检测与识别 _ 基于YOLO11-C3k2-EIEM模型的智能识别系统_1

本文提出了一种基于YOLO11-C3k2-EIEM模型的智能药丸检测系统。该系统通过改进的YOLO11架构结合C3k2模块和EIEM损失函数,实现了高精度的药丸识别。实验结果表明,该模型在自建药丸数据集上达到91.5%的mAP,优于传统YOLO模型。系统可应用于药房自动化、药品管理等场景,具有重要的医疗应用价值。文章详细介绍了系统架构、模型设计、训练优化及实验结果,为智能药丸识别提供了有效的解决方案。

2025-12-03 13:04:53 759

原创 苹果分级与损伤检测 - 基于YOLO13-C3k2-CaFormer的智能识别系统

本文提出了一种基于YOLO13-C3k2-CaFormer的苹果智能分级与损伤检测系统。该系统通过创新的C3k2跨尺度特征融合模块和CaFormer注意力机制,有效提升了检测精度,在10,000张多品种苹果图像数据集上达到92.3%的mAP@0.5。系统采用分阶段训练策略,结合知识蒸馏和量化技术优化模型,最终实现45MB的轻量化模型,推理速度达8ms。实验表明,该方法显著优于传统YOLOv13模型,为苹果自动化分级提供了高效解决方案。

2025-11-24 17:38:20 53

原创 YOLOv8注意力机制在预制构件识别与定位中的应用详解

本文详细介绍了YOLOv8结合注意力机制在预制构件识别与定位中的应用。首先概述了预制构件识别的重要性及YOLOv8算法的优势,然后深入解析了空间注意力、通道注意力和CBAM注意力机制的原理与公式。文章分析了YOLOv8的基础架构及其与注意力机制的集成方式,并提供了代码示例。在实践部分,重点阐述了预制构件数据集的构建方法,包括数据收集、标注规范和数据集划分策略,以及模型训练中的损失函数设计和优化器选择。研究表明,YOLOv8结合注意力机制能有效提升预制构件识别的准确性和鲁棒性,为建筑工程智能化提供了有力支持。

2025-11-22 21:07:39 49

原创 基于YOLO13-C3k2-MogaBlock的沥青路面坑洼与裂缝检测系统

本文提出了一种基于改进YOLO13算法的沥青路面坑洼与裂缝检测系统,通过引入C3k2模块和MogaBlock结构提升检测性能。系统采用深度学习技术自动识别路面病害特征,包括坑洼和裂缝的形态、尺寸及严重程度。文章详细阐述了YOLO算法发展、注意力机制与特征融合技术,以及路面病害特征分析。在数据集构建方面,介绍了数据采集、标注流程及预处理方法。算法改进部分重点描述了C3k2模块设计、MogaBlock结构和损失函数优化,有效解决了低对比度、多尺度目标检测等挑战。该系统为道路养护提供了高效的自动化检测方案。

2025-11-22 20:31:36 68

原创 基于YOLO13车牌识别与定位技术研究

本文研究了基于YOLOv3的车牌识别与定位技术,重点分析了车牌定位算法。YOLOv3采用Darknet-53网络结构和多尺度预测机制,通过回归方法直接预测边界框坐标。文章详细阐述了车牌定位的数学模型和实现代码,包括数据预处理、网络结构设计和损失函数计算。实验结果表明,该方法能有效提高车牌定位的准确性和鲁棒性,为后续字符分割和识别奠定基础。研究还提供了完整的代码实现,展示了YOLOv3在车牌定位任务中的实际应用效果。

2025-11-20 19:07:19 41

原创 基于YOLO13-C3k2-PPA的玫瑰叶片病害分类系统:黑斑病、健康叶片、白粉病和绒毛病识别研究

摘要:本文提出了一种基于改进YOLO13架构的玫瑰叶片病害智能识别系统,通过融合C3k2-PPA注意力机制,实现了对黑斑病、白粉病、绒毛病及健康叶片的高精度分类。系统采用深度学习技术,构建包含1000张图像的数据集,通过特征分析和模型优化,在测试集上达到95.5%的平均准确率。消融实验验证了C3k2-PPA模块的有效性,较基础模型提升3.5%准确率。该系统可应用于农业病害监测,为玫瑰种植提供智能化解决方案,未来可结合物联网实现自动化管理。(148字)

2025-11-20 18:30:28 46

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除