自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(49)
  • 收藏
  • 关注

原创 【人工智能】YOLOv26实现帽子佩戴状态检测与头部识别技术详解

本文详细介绍了基于YOLOv26的帽子佩戴状态检测与头部识别技术。YOLOv26采用端到端无NMS设计,通过移除DFL模块、引入MuSGD优化器等创新,显著提升了检测效率和边缘设备兼容性。文章涵盖了模型架构、数据集准备、训练方法、性能评估及实际应用场景,特别强调了该技术在安防监控、智能零售等领域的实用价值。YOLOv26在保持高精度的同时,CPU推理速度提升达43%,使其成为实时帽子检测的理想选择。

2026-01-28 16:04:16 496

原创 【YOLOv26】教育环境中危险物品实时检测系统_基于深度学习的校园安全解决方案

YOLOv26作为最新的目标检测算法,在YOLO系列的基础上进行了多项创新改进,特别适合于校园安全这种对实时性和准确性要求较高的应用场景。我们的教育环境危险物品检测系统采用了最新的YOLOv26目标检测算法,结合边缘计算技术,实现了高效、准确的实时检测。图像采集模块:通过摄像头实时采集校园各区域的视频流目标检测模块:基于YOLOv26的危险物品识别预警模块:对检测到的危险物品进行风险评估并发出预警管理平台:提供可视化的监控界面和数据分析功能这个系统的最大特点是轻量级和高效率。

2026-01-28 15:24:07 501

原创 基于YOLOv26的文档手写文本与签名识别系统·从模型改进到完整实现

本文详细介绍了一个基于YOLOv26的文档手写文本与签名识别系统的完整实现过程。通过充分利用YOLOv26的端到端无NMS推理特性和MuSGD优化器的优势,我们构建了一个高效、准确的文档识别系统。系统的多任务学习框架使其能够同时处理文本行检测、单词识别和签名验证等多个任务,大大提高了处理效率。实验结果表明,我们的系统在多个数据集上都达到了业界领先水平,特别是在处理复杂文档时表现出了强大的鲁棒性。系统的Web界面设计使得非技术人员也能轻松使用,大大扩展了应用场景。

2026-01-28 14:45:46 670

原创 【目标检测改进】基于YOLOv26的公路护栏与灯杆检测识别系统

从YOLO到MMDetection,从两阶段到单阶段,目标检测领域的发展可谓波澜壮阔。每个模型都有其独到之处,也都有其适用场景。希望这篇文章能帮助你更好地理解这些算法,为你的项目选择最合适的模型。记住,技术只是工具,解决问题才是目的。无论选择哪种模型,都要从实际需求出发,在精度、速度和成本之间找到最佳平衡点。祝你在计算机视觉的探索之路上越走越远!想了解更多模型训练技巧?点击这里获取详细指南!目标检测作为计算机视觉的核心任务,其发展历程充满了创新与突破。

2026-01-28 14:13:46 721

原创 基于YOLOv26的菠萝品质分级与缺陷检测系统实战_计算机视觉应用详解

本文介绍了一种基于YOLOv26的菠萝品质分级与缺陷检测系统,旨在解决农业自动化生产中的品质检测难题。该系统通过计算机视觉技术实现高效、准确的自动化检测,克服了传统人工检测效率低、成本高且主观性强等缺点。核心创新包括:移除DFL模块简化推理过程;采用端到端无NMS推理架构减少延迟;引入ProgLoss+STAL损失函数提高小目标识别精度;以及结合SGD和Muon优势的MuSGD优化器。系统提供多种模型变体(YOLOv26n/s/m/l/x),在菠萝数据集上mAP达到85.2-93.7,CPU推理速度最快仅3

2026-01-28 13:31:35 596

原创 通信基站天线设备检测与分类YOLO11-LSCD-LQE算法实现与优化

本文提出了一种基于YOLO11-LSCD-LQE算法的通信基站天线设备检测与分类系统。该系统针对5G基站天线检测的挑战,结合局部特征提取(LSCD)和置信度评估(LQE)模块,显著提升了检测精度。系统采用模块化设计,包含数据预处理、模型训练、目标检测和结果分析四大核心模块。实验结果表明,该方法在1000张包含5类天线设备的真实场景图像上表现优异,有效解决了复杂环境下的检测难题。该技术为基站设备智能化运维提供了高效解决方案。

2026-01-20 18:01:38 600

原创 基于YOLOv5-FasterNet的溺水状态检测与识别系统实战教程

本文提出了一种基于YOLOv5-FasterNet的溺水状态检测系统,通过引入FasterNet的高效特征提取能力优化YOLOv5网络结构。实验表明,改进后的模型在保持87.6% mAP精度的同时,推理速度提升至62 FPS,参数量减少32%。研究采用自建水域安全数据集(10,000张图像),通过PConv机制、特征融合改进和损失函数优化等创新点,显著提升了复杂水域环境下的检测性能。消融实验验证了各改进模块的有效性,为水域安全监控提供了更可靠的实时检测方案。

2026-01-20 17:28:46 537

原创 使用_ssd300_训练蘑菇分类数据集经验总结_毒菇与食用菇自动识别研究

本文介绍了基于SSD300模型的蘑菇分类系统研究,旨在通过深度学习技术区分毒菇与食用菇。研究采用改进的SSD300架构,结合MobileNetV2骨干网络和注意力机制,对包含2000张蘑菇图片的数据集进行训练。通过数据增强、难例挖掘等技术优化,模型在测试集上达到92.3%的准确率。文章详细阐述了数据预处理、模型改进、训练策略及移动端部署方案,为食品安全领域的AI应用提供了实用案例。

2026-01-20 16:56:02 617

原创 YOLO11-C3k2-ODConv玻璃缺陷检测与分类任务详解

本文提出了一种基于改进YOLO模型的玻璃缺陷检测系统,采用YOLO11-C3k2-ODConv架构实现高效检测。系统包含数据采集、模型训练、缺陷检测和结果分析四大模块。通过C3k2多尺度特征融合模块和ODConv优化空洞卷积,模型在保持精度的同时提升30%计算效率。实验使用5000张标注图像数据集,涵盖气泡、划痕等常见缺陷,结合AdamW优化器和余弦退火学习率调度进行训练。评估结果表明,改进模型在精确率、召回率和推理速度上均优于传统YOLOv8,为工业玻璃质量检测提供了高效解决方案。

2026-01-20 16:34:37 1037

原创 轨道裂缝检测与识别_yolo11-C3k2-SMAFB-CGLU改进模型训练与应用

YOLO11作为最新的目标检测模型,以其高效的检测精度和速度在计算机视觉领域备受关注!🚀 该模型在保持实时性的同时,显著提升了小目标检测能力,特别适合轨道裂缝这类细长目标的识别任务。轨道裂缝检测是铁路安全维护的关键环节,传统的人工检测方法不仅效率低下,还存在安全隐患。基于深度学习的自动检测系统可以24小时不间断工作,大幅提升检测效率和准确性。💪YOLO11-C3k2-SMAFB-CGLU改进模型在轨道裂缝检测任务中表现优异,不仅提升了检测精度,还保持了较高的推理效率。

2026-01-20 16:01:50 630

原创 YOLO11-C3k2-AdditiveBlock-CGLU实现起重机械钢丝绳缺陷检测

钢丝绳缺陷检测模型YOLO11-C3k2-AdditiveBlock-CGLU摘要 本文提出了一种基于改进YOLO11模型的起重机械钢丝绳缺陷检测方法。模型整合了C3k2模块、AdditiveBlock和CGLU注意力机制,显著提升了检测性能。C3k2模块通过分组卷积增强特征提取能力;AdditiveBlock结合加性注意力和残差连接,有效捕捉细微缺陷特征;CGLU注意力机制融合卷积与门控机制,强化空间特征捕捉。实验采用4317张标注图像,包含断裂、雷击损伤和磨损三类缺陷,预处理至640×640像素。模型在

2026-01-19 10:17:10 465

原创 基于双目视觉的可行驶区域与障碍物检测_yolo11-C3k2-EfficientVIM模型详解

基于双目视觉的可行驶区域与障碍物检测技术是自动驾驶系统的核心能力。本文提出的yolo11-C3k2-EfficientVIM模型创新性地结合了YOLO检测框架与改进的EfficientNet特征提取器,通过C3k2跨尺度连接模块实现多尺度特征融合。该模型在10万对双目图像数据集上训练,采用多任务损失函数联合优化深度估计与障碍物检测,最终达到89.2% mAP和22FPS的优异性能。实验证明,该模型在保持精度的同时显著提升推理速度,适用于自动驾驶和机器人导航等实时场景。未来将通过引入更多注意力机制和多模态融合

2026-01-19 09:48:44 1010

原创 【目标检测】YOLO13-C3k2-PFDConv实现长颈鹿与斑马精准检测,完整教程与代码解析_1

本文提出了一种基于改进YOLO13架构的长颈鹿与斑马精准检测方法。通过引入创新的C3k2-PFDConv模块,结合通道注意力机制,有效提升了模型对相似纹理特征的区分能力。实验表明,该方法在保持40FPS推理速度的同时,mAP达到90.8%,优于基准模型3.7个百分点。系统已成功部署于野生动物保护区,实现89%以上的识别准确率,为生态监测提供了高效技术手段。文章详细介绍了模型设计、训练策略和实际应用效果,展现了计算机视觉技术在野生动物保护领域的应用价值。

2026-01-19 09:24:48 666

原创 脊柱结构异常检测与分类:基于Cascade-RCNN和HRNetV2p-W32模型的改进方案

本文提出了一种改进的脊柱结构异常检测模型,结合Cascade-RCNN和HRNetV2p-W32架构,通过多模块优化显著提升检测性能。模型采用跨尺度注意力机制和边缘感知模块增强特征提取,改进的区域提议网络减少40%无关提议,级联检测头结构使精度提升4%。实验表明,该方案在公开数据集上mAP达到0.817,对稀有异常的检测敏感性提高30%。消融研究验证了各改进模块的有效性,其中解剖约束损失贡献最大。该模型已投入临床测试并获得积极反馈,未来计划扩展3D信息融合和多模态分析,为脊柱疾病诊断提供更智能化的辅助工具。

2026-01-19 08:56:38 648

原创 铁栏表面状态检测_YOLO12-A2C2f-DYT_模型优化与应用

本文提出了一种改进的YOLO12-A2C2f-DYT模型,用于铁栏表面状态检测任务。该模型在YOLOv12基础上引入了注意力增强模块(A2)和特征融合网络(C2f),并采用动态任务分配检测头(DYT)。A2模块结合通道和空间注意力机制,显著提升了小缺陷检测能力;C2f模块通过改进的特征金字塔网络增强了多尺度特征融合效果;DYT检测头实现了自适应任务分配。实验表明,该模型在铁栏状态检测任务中表现优异,特别适用于工业质检和自动化监测场景,能有效识别清洁、检查和未清洁三种铁栏状态。

2026-01-19 08:36:19 578

原创 鱼类图像识别与分类改进YOLO13-C3k2-FMB实现ikan和mulut检测

本文提出了一种改进的YOLOv13模型(YOLO13-C3k2-FMB)用于鱼类图像识别与分类。通过引入C3k2跨尺度特征融合模块和FMB感受野增强模块,有效提升了模型对ikan和mulut两种鱼类的检测精度。C3k2模块采用多尺度特征提取和注意力机制,增强特征表达能力;FMB模块通过多尺度空洞卷积扩大感受野。实验表明,改进模型在保持实时检测速度(约30FPS)的同时,mAP提升约8%,召回率提升10%。研究还构建了包含5000张图像的数据集,采用多种数据增强策略提升模型泛化能力。该改进方法为鱼类识别任务提

2026-01-18 17:29:00 477

原创 Poa annua草种智能识别与检测系统 YOLO模型训练与实现

经过今天的深入解析,相信大家对YOLO系列模型有了全面的认识。从YOLOv1到YOLOv13,YOLO系列在目标检测领域取得了令人瞩目的成就!开创单阶段检测先河:YOLOv1首次提出单阶段检测思想推动实时检测发展:在保持精度的同时不断提升检测速度促进开源生态繁荣:YOLOv5/v8等版本的开源实现极大降低了使用门槛引领技术发展方向:YOLO系列始终是目标检测领域的技术标杆SuccessYOLOSpeed×Accuracy×UsabilitySuccessYOLO​Speed。

2026-01-18 16:15:32 576

原创 【房屋建筑目标检测】基于Decoupled-Solo模型的建筑检测方法实现与优化_r50_fpn_1x_coco

本文详细介绍了基于Decoupled-Solo模型的房屋建筑目标检测方法。该模型采用解耦检测头设计,将分类和定位任务分离处理,在COCO数据集上实现了85.3%的mAP@0.5和32.5FPS的高效检测性能。实验使用RTX 3090显卡,通过数据增强、混合精度训练等优化策略,显著提升了模型训练效率。相较于Faster R-CNN、YOLOv5等主流模型,Decoupled-Solo在精度和速度上均展现优势。文章还提供了完整的代码实现方案,包括TensorRT加速和模型量化等部署优化策略。该方法可有效应用于城

2026-01-18 15:38:31 1164

原创 【珠宝识别】使用YOLOv8-HSFPN实现首饰分类检测系统详解

摘要:本文详细介绍了一个基于YOLOv8-HSFPN模型的珠宝识别系统,该系统通过结合特征金字塔网络和多尺度特征融合技术,有效解决了珠宝检测中尺寸差异大、特征复杂的问题。文章从系统设计、数据集构建、模型训练与优化到性能评估进行了全面阐述,展示了该模型在珠宝检测任务上优于YOLOv5s、YOLOv7等主流模型的性能表现(mAP@0.5达0.857)。最后介绍了基于Flask框架的Web应用实现方案,为珠宝行业的智能化识别提供了实用解决方案。

2026-01-18 15:19:20 710

原创 【技术实践】基于YOLOv8与ConvNeXtV2的猫狗图像分类与目标检测系统详解

本文提出了一种结合YOLOv8和ConvNeXtV2的猫狗检测系统,采用双模态架构实现高效准确的目标检测。系统包含数据预处理、特征提取、目标检测和后处理四个模块,其中ConvNeXtV2替换YOLOv8的CSP结构,显著提升特征提取能力。实验在NVIDIA RTX 3090环境下进行,采用SGD优化器和动态学习率策略。使用CIFAR-10数据集测试表明,模型准确率随网络深度增加而提升,验证了架构有效性。预处理阶段通过多种数据增强策略提高模型鲁棒性。该系统为宠物管理、动物保护等领域提供了可靠的技术支持。

2026-01-15 18:09:44 605

原创 【深度学习】YOLOv3实现鸡蛋缺陷检测与分类_1

本文提出了一种基于改进YOLOv3的鸡蛋缺陷检测方法。通过引入多尺度特征融合、注意力机制和优化损失函数,模型在检测精度和速度上均有提升。实验结果表明,改进后的YOLOv3在鸡蛋缺陷检测任务中mAP达到0.864,优于原始模型和其他YOLO变体。该系统已成功应用于鸡蛋加工产线,检测效率达600个/分钟,准确率96.5%。未来可进一步优化小缺陷检测能力,并探索轻量化部署方案。

2026-01-14 16:03:55 867

原创 Slip物品检测与识别_yolo13-C3k2-PFDConv模型详解与应用

本文详细介绍了yolo13-C3k2-PFDConv模型在Slip物品检测中的应用。首先阐述了Slip检测在工业、仓储和家庭场景中的重要性及其技术挑战。然后回顾了目标检测基础原理,包括候选区域生成、数据表示、IoU评估和非极大值抑制算法。重点分析了YOLO系列模型(v1-v3)的演进过程及其改进点。最后详细解析了专为Slip检测优化的yolo13-C3k2-PFDConv模型架构,特别是其核心创新模块C3k2和PFDConv的设计原理,这些改进显著提升了模型对Slip物品(尤其是小物体和不规则形状物体)的检

2026-01-13 16:09:14 663

原创 Cascade R-CNN模型实现气胸检测与定位任务

摘要: 本文提出一种改进的Cascade R-CNN模型用于气胸检测与定位,通过跨尺度注意力模块(CSAM)和特征增强融合层(FEFL)提升检测精度,尤其针对小型气胸区域。模型在3800张胸部X光片数据集上训练,采用多阶段IoU阈值动态调整策略,最终mAP@0.5达0.892,较基准模型提升5.7%。实验显示该模型与放射科医师诊断结果高度一致(Kappa=0.77),单图检测仅需0.15秒,具有显著临床应用价值。项目代码和数据集已开源,为医疗影像AI研究提供可靠技术方案。

2026-01-07 21:12:06 680

原创 基于改进DINO-4scale模型的棉田作物生长监测与识别系统研究

本研究提出了一种基于改进DINO-4scale模型的棉田作物生长监测系统。该系统通过优化模型结构,引入注意力机制和多尺度特征融合,显著提高了识别准确率。实验表明,系统在晴天条件下达到94.2%的准确率和91.7%的mAP值,优于传统方法。系统采用微服务架构,支持实时监测、异常预警和生长评估等功能,为精准农业提供了智能化解决方案。研究结果表明,改进后的模型能有效适应复杂田间环境,为棉花生长监测提供了新的技术途径。

2026-01-07 20:39:20 815

原创 交通标志识别与分类改进_YOLOv13融合C3k2与IDWB模块提升红绿灯及限速标志检测效果_原创

本文提出了一种改进YOLOv13模型的方法,通过融合C3k2和IDWB模块提升交通标志识别效果。C3k2模块结合多尺度卷积增强小目标特征提取能力,IDWB模块利用动态权重机制优化特征融合。实验表明,改进后的模型在红绿灯和限速标志检测任务中mAP达到0.891,优于原YOLOv13和其他版本。该方法已成功应用于智能驾驶辅助、交通监控和导航系统。未来将进一步优化模型轻量化、多模态融合和自适应学习能力,以适应复杂交通场景需求。

2026-01-04 19:07:06 650

原创 【人工智能】基于YOLO11-C3k2-LFE模型的LED灯目标检测与识别系统研究

本研究提出了一种基于改进YOLO11的LED灯目标检测系统(YOLO11-C3k2-LFE),通过引入多尺度卷积和注意力机制的C3k2-LFE模块提升检测性能。实验在NVIDIA RTX 3090硬件平台上进行,采用640×640输入尺寸、16批次大小和300训练轮数等参数配置。通过对比YOLOv5、YOLOv7、YOLOv8等模型,验证了改进模块的有效性。系统实现了高效的LED灯检测与识别,为工业质检等应用提供了解决方案。

2026-01-04 18:37:29 1045

原创 YOLO11实现眼镜检测与分割技术详解

本文详细介绍了基于YOLO11的眼镜检测与分割技术实现。YOLO11采用改进的CSPDarknet作为Backbone网络,结合PANet特征融合和一体化检测分割Head,通过单次前向传播完成目标检测和语义分割。文章涵盖了模型架构解析、数据准备(包括多样化的图像采集和精确标注)、数据增强策略以及模型训练优化方法,重点讲解了复合损失函数设计、多尺度训练等关键技术。实验结果表明,YOLO11在保持高精度的同时显著提升了处理速度,适用于安防监控、智能零售等实时应用场景。

2026-01-02 12:29:10 877

原创 玻璃瓶检测与识别篇:YOLOv13-C3k2-MogaBlock模型改进详解

本文提出了一种改进的YOLOv13-C3k2-MogaBlock模型,针对玻璃瓶检测任务进行优化。针对原C3k2模块特征表达能力有限、空间处理不足等问题,新模型引入多尺度特征融合和双重注意力机制(通道+空间),显著提升了模型对玻璃瓶透明、反光等特征的提取能力。实验表明,改进模型在玻璃瓶检测任务上mAP达到85.6%,较原模型提升13.3%,推理速度仅下降5.2%。通过渐进式训练和针对性数据增强,模型在实际工业环境中检测准确率达92.3%,有效解决了玻璃瓶检测中的尺度变化、遮挡和反光等挑战。

2026-01-02 11:59:59 1043

原创 如何使用Yolo11-seg-Bifpn实现人员跌倒检测系统_1

本文介绍了基于YOLO11-Seg-BiFPN模型的人员跌倒检测系统实现方法。系统通过视频采集、模型推理和警报触发三部分构成,核心是改进的YOLO11模型,结合BiFPN特征融合和分割能力提升检测精度。文章详细阐述了环境配置、数据集准备、模型训练和评估流程,并提供了实时检测系统的实现代码。实验表明该模型在精确率、召回率和mAP指标上优于其他对比模型。最后还提出了通过引入姿态估计进一步优化算法的思路。该系统在养老监护等领域具有重要应用价值。

2025-12-29 10:50:14 630

原创 YOLOv10-Fasternet实现汽车轮毂与螺栓自动检测与识别系统

本文介绍了基于ATSS算法的汽车轮毂与螺栓智能检测系统。从数据集准备(COCO格式标注)、模型选择(ATSS算法的自适应训练样本选择策略),到模型训练配置(ResNet101+FPN网络结构)和性能优化(数据增强、损失函数调优等)进行了详细讲解。该系统在汽车制造质检和维修服务等场景中应用效果显著,检测准确率达98.5%。文章还提供了完整项目资源获取链接,并探讨了3D检测技术和多模态融合等进阶优化方向。

2025-12-20 12:11:30 764

原创 YOLOv10n模型在工业设备螺栓与扳手检测识别中的应用与优化

本文探讨了YOLOv10n模型在工业设备螺栓与扳手检测中的应用与优化。该模型通过改进的CSP结构、SPPF模块和特征融合机制,显著提升了检测精度和速度。研究采用多种数据增强策略构建数据集,并运用知识蒸馏、模型剪枝等优化方法,使模型在保持95.2% mAP的同时,推理速度达55FPS,模型大小仅8.3MB。实验表明,YOLOv10n在工业检测任务中优于其他YOLO变体,适用于边缘设备部署。未来可进一步优化小目标检测和多模态融合技术。

2025-12-20 11:33:30 816

原创 蓝莓果实检测与识别:基于改进的solo_r50_fpn模型实践

本文介绍了基于改进solo_r50_fpn模型的蓝莓果实检测方法。通过引入注意力机制和优化特征金字塔结构,显著提升了密集果实和小目标的检测精度。构建了包含5000张标注图像的数据集,采用余弦退火学习率策略和定制损失函数进行训练优化。实验结果显示,模型mAP达到0.86,召回率0.89,并成功应用于智能采摘和产量预测等场景。经轻量化处理后,模型体积缩减90%,推理速度提升3倍,验证了该方案在农业智能化中的实用价值。

2025-12-19 20:11:25 696

原创 基于无人机航拍图像的水上漂浮物体检测:使用SSD512改进模型实现桨板自动识别与定位_PISA_COCO数据集应用_3

摘要: 本文提出一种改进的SSD512模型,用于无人机航拍图像中的水上漂浮物体(特别是桨板)检测。针对复杂水面环境下的检测挑战,模型引入特征金字塔网络(FPN)增强多尺度特征融合,结合SE注意力机制提升目标区域关注度,并采用Focal Loss优化难样本训练。实验基于PISA_COCO数据集(含桨板、救生圈等4类目标),通过数据增强和归一化预处理提升模型鲁棒性。该方法有效解决了小目标检测、环境干扰和实时性需求等关键问题,为水上活动监控和智能水域管理提供了技术支撑。

2025-12-17 09:10:51 844

原创 铝箔与铝制品自动检测:基于YOLO13-C3k2-ConvFormer的智能分类系统详解

基于YOLO13-C3k2-ConvFormer的铝箔与铝制品智能分类系统,通过结合最新的计算机视觉技术和深度学习算法,实现了对铝制品缺陷的高效、准确检测。该系统已在多家铝制品企业成功应用,显著提高了产品质量和生产效率。多模态融合:结合可见光、红外和X射线等多模态数据,提高对内部缺陷的检测能力。小样本学习:研究如何利用少量样本训练有效的检测模型,解决某些罕见缺陷样本不足的问题。自监督学习:探索无监督和自监督学习方法,减少对标注数据的依赖。持续学习:实现模型的在线学习和更新,适应新产品和新缺陷类型的出现。

2025-12-16 20:17:49 955

原创 基于Mask R-CNN的AGV识别与定位系统_r101_caffe_fpn模型优化

本文提出了一种基于Mask R-CNN的AGV识别与定位系统优化方案,重点针对r101_caffe_fpn模型进行了多方面的改进。通过特征提取网络优化(深度可分离卷积、通道剪枝)、特征金字塔网络改进(自适应特征融合、注意力机制)、区域提议网络优化(锚框策略调整)以及模型蒸馏与量化等技术,在保持识别精度的同时显著提升了系统性能。实验结果表明,优化后的模型检测准确率达95.6%,推理速度提升近4倍,模型大小减少66%,成功应用于智能仓储和制造业生产线场景,有效提高了物流效率和空间利用率。该系统为工业自动化中的A

2025-12-16 19:34:07 651

原创 苹果叶片病害检测与分类:Yolo11-C3k2-iRMB-Cascaded模型创新应用详解

本文提出了一种改进的YOLO11-C3k2-iRMB-Cascaded模型用于苹果叶片病害检测。该模型通过引入C3k2模块增强特征提取能力,采用iRMB模块实现轻量化设计,并结合Cascaded结构提高检测精度。实验表明,该模型在保持轻量化的同时(参数量减少40%),检测精度显著提升(mAP达92.3%),优于YOLOv5等主流模型。研究使用包含5种常见病害的10,000张图像数据集,通过数据增强和优化训练策略,实现了高效准确的苹果病害自动检测,为智慧农业提供了实用解决方案。

2025-12-14 16:31:11 1064

原创 Apex游戏角色与物体检测任务_YOLOX_S模型训练与优化_1

本文介绍了使用YOLOX_S模型进行Apex游戏角色与物体检测的全流程。首先详细讲解了数据集构建与预处理方法,包括VOC格式到YOLO格式的转换,以及使用Albumentations库实现数据增强策略。然后深入解析了YOLOX_S模型架构,包括CSPDarknet主干网络、FPN+PAN特征融合和解耦头设计,并提供了模型配置参数说明。最后概述了训练流程优化要点,如学习率调度和数据增强策略。该方案为游戏目标检测任务提供了轻量高效的技术实现路径。

2025-12-14 16:01:39 1079

原创 YOLOv5酒类产品价格标签与商品检测系统研究

本文基于YOLOv5算法开发了一套酒类产品价格标签与商品检测系统,通过优化网络结构和训练策略实现高精度检测。系统采用改进的YOLOv5s模型,结合CSP结构、SPPF模块和Focus模块等创新设计,显著提升了检测性能。实验结果表明,该系统在复杂场景下仍保持较高准确率和实时性,mAP@0.5达到92.3%,推理速度达45FPS。研究收集了包含10,000张酒类产品图像的数据集,涵盖白酒、红酒、啤酒、洋酒和价格标签5个类别,采用多种数据增强策略提升模型泛化能力。该系统为零售业自动化提供了有效解决方案,具有重要的

2025-12-11 13:32:32 588

原创 改进YOLOv8结合跨尺度多头自注意力机制实现野火烟雾检测

本文提出了一种改进YOLOv8模型,结合跨尺度多头自注意力机制(CSMHSA)的野火烟雾检测方法。针对烟雾检测中存在的低对比度、小目标和多尺度变化等挑战,研究在YOLOv8基础上引入CSMHSA模块,通过并行处理多个注意力头并融合跨尺度特征,显著提升了模型性能。实验表明,改进后的模型mAP达到89.9%,较原始YOLOv8提升3.2%,同时在边缘设备部署中保持25FPS的实时检测速度。该研究为复杂环境下的野火早期预警提供了有效的技术方案,未来可进一步探索多模态融合和轻量化方向。

2025-12-11 12:59:12 1054

原创 YOLO12-PGI电梯按钮检测与识别_1

电梯按钮检测系统基于YOLO12-PGI算法实现,该算法融合了YOLOv12的检测框架与PGI(Partial Gradient Integration)模块。PGI模块通过部分梯度整合机制,有效缓解了深层网络中梯度消失问题,显著提升了小目标(如电梯按钮)的检测精度。算法采用多尺度特征融合策略,在640×640输入分辨率下,通过Backbone网络提取不同层级的特征图,经Neck部分进行特征增强后,由Head部分完成类别预测和位置回归。损失函数采用CIoU Loss优化边界框定位,配合Focal Loss解

2025-12-08 19:51:38 895

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除