自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 历史文化名城中的Mecid对象检测识别_yolo11-C3k2-MambaOut-SFSC实现详解

摘要:本文提出了一种基于改进YOLOv11算法的历史文化名城Mecid(文化标识物)检测系统,通过C3k2模块增强多尺度特征融合能力,引入MambaOut注意力机制处理长距离依赖关系,并采用创新的SFSC空间-频率协同融合策略。在包含10,000张图像的数据集上测试表明,该方法相比基线模型mAP提升7.7%,能有效识别古建筑、雕刻、壁画等不同尺度目标。系统采用前后端分离架构,为文化遗产数字化保护提供了高效精准的技术方案。

2026-01-05 10:41:06 430

原创 YOLOv8改进实战:基于v7DS的弹珠颜色分类与目标检测系统

本文介绍了基于YOLOv8改进的v7DS模型在弹珠颜色分类与目标检测系统中的应用。作者针对传统YOLO模型在检测小目标物体时存在的不足,提出了改进方案v7DS,通过优化网络结构和训练策略提升检测精度。文章详细阐述了项目背景、改进方案设计、数据集构建与预处理方法,以及模型训练过程。实验结果表明,改进后的v7DS模型在弹珠颜色分类和目标检测任务中表现出更高的准确率和鲁棒性。该研究为小物体检测领域提供了新的技术思路和实践经验。

2026-01-05 10:13:35 347

原创 铁路场景异物检测新突破:基于Point-Rend的多目标识别系统

Point-Rend是一种新型的图像分割方法,它将图像分割视为一个点采样过程,通过迭代细化分割边界,实现高精度的目标分割。高效性:通过智能采样策略,减少计算量,提高处理速度。高精度:能够精确分割目标边界,特别是在复杂场景中表现优异。灵活性:可以与现有的目标检测算法结合,形成强大的多目标识别系统。本文介绍了一种基于Point-Rend的多目标识别系统,该系统在铁路场景异物检测中取得了显著突破。

2026-01-02 17:20:43 904

原创 基于YOLO12-A2C2f-DFFN的番石榴新鲜度检测系统实现

本文提出了一种基于改进YOLO12模型的番石榴新鲜度检测系统,通过引入A2C2f注意力机制和DFFN深度特征融合网络,显著提升了检测精度。系统采用5000张不同新鲜度级别的番石榴图像进行训练,通过数据增强和迁移学习策略优化模型性能。实验结果表明,改进后的YOLO12-A2C2f-DFFN模型在准确率、精确率等指标上表现优异,mAP达到92.3%,优于基础YOLO12模型。该系统可应用于农产品收购、仓储管理等场景,实现高效准确的番石榴新鲜度检测。未来将进一步优化模型结构并扩展多模态检测方法。

2026-01-02 16:59:08 778

原创 YOLOv8火山喷发物羽流检测与分类:DySample改进算法详解

本文提出了一种改进YOLOv8的火山喷发物羽流检测算法,通过引入自适应焦点采样(ASF)和动态采样(DySample)策略,有效提升了检测精度。ASF方法基于像素梯度和语义重要性动态调整采样强度,增强羽流边缘特征;DySample则根据模型表现动态调整采样权重,解决样本不平衡问题。实验表明,改进后的模型mAP达到81.2%,比原始YOLOv8提升8.8个百分点,在复杂场景下表现出色。该方法在航空安全和环境监测领域具有重要应用价值。

2025-12-30 09:15:03 843

原创 工程车辆与设备识别模型_yolov5-EfficientRepBiPAN详解_1

本文详细介绍了一种基于YOLOv5和EfficientRepBiPAN的工程车辆与设备识别模型。该模型结合YOLOv5的高效检测能力和EfficientRepBiPAN的特征提取优势,在复杂工业场景下达到95.3%的mAP@0.5准确率。模型采用自适应锚框计算、Mosaic数据增强等技术,并支持多种部署方式。实际应用中显著提升了工程管理效率,未来计划结合Transformer架构和多模态数据进一步提升性能。

2025-12-30 08:41:05 979

原创 基于Grid-RCNN的食用蘑菇识别模型训练与优化

本文详细介绍了基于Grid-RCNN的食用蘑菇识别模型的训练与优化过程。首先阐述了环境配置步骤,包括虚拟环境创建、源码克隆及常见问题解决方案。其次说明了数据集的获取与组织方法,强调VOC格式标准。然后详细描述了模型训练流程,包括参数设置、训练监控和性能评估。最后探讨了优化策略,如数据增强、超参数调优和模型集成技术,以提高模型在蘑菇识别任务上的准确率和鲁棒性。整个过程系统性地展示了从环境搭建到模型优化的完整解决方案,为特定领域的图像识别任务提供了实用参考。

2025-12-29 17:03:46 938

原创 YOLOv11-C3k2-StripCGLU改进:南疆棉花生长阶段与果实识别任务详解

本文提出了一种改进的YOLOv11-C3k2-StripCGLU模型,用于南疆棉花生长阶段和果实识别任务。通过优化C3k2模块的特征提取能力,引入新型StripCGLU注意力机制,并构建专业数据集,模型在mAP@0.5指标上达到90.2%,比原版提升7.2%。该模型具有12ms的实时处理速度,小目标检测准确率达85.7%,并能准确区分棉花四个关键生长阶段(92.6%准确率)。实际应用中,该模型成功部署于南疆棉区,用于生长监测、产量预测、病虫害检测和精准灌溉等场景,采用边缘计算+云计算的混合架构实现高效部署。

2025-12-25 12:53:42 558

原创 YOLOv10n-MultiSEAMHead:棉花行栽作物检测与定位的创新方案

本文提出了一种基于YOLOv10n-MultiSEAMHead的棉花行栽作物检测与定位创新方案。该方案通过YOLOv10n轻量化骨干网络和MultiSEAMHead多尺度检测头,实现了复杂农田环境下棉花植株的高效识别与精准定位。关键技术包括SCDown模块高效下采样、C2fCIB增强特征提取、自适应特征融合机制以及多任务损失函数优化。实验表明,该方法在保持高精度的同时显著提升推理速度,特别在幼苗期小目标检测上召回率提升5.8%,光照变化场景下精度提升4.2%,为精准农业作业提供了可靠的技术支持。

2025-12-25 12:14:34 974

原创 34丨深度学习使用Keras完成线性回归

Keras提供了一系列高级API和便捷的工具,使得用户可以快速构建和训练深度学习模型,而不必关注底层的细节。方便的调试和实验:Keras提供了实时可视化的工具,方便用户查看模型的训练情况和测试结果,并且支持各种回调函数,例如早期停止、学习率调整等。总之,Keras是一款优秀的深度学习框架,它使得深度学习模型的构建和训练变得更加简单和快速,可以帮助用户更加专注于模型的设计和应用。Keras是一款优秀的深度学习框架,它使得深度学习模型的构建和训练变得更加简单和快速,可以帮助用户更加专注于模型的设计和应用。

2025-11-27 15:11:08 209

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除