自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 【YOLO11项目实战】胡蜂属物种识别与检测——CGAFusion改进方法实现

本文提出了一种基于YOLO11框架改进的胡蜂属物种识别方法,通过引入CGAFusion注意力机制,有效提升了小目标检测性能。实验结果表明,改进后的模型mAP达到0.847,较原版提升8.3%,在复杂背景下仍保持良好鲁棒性。项目构建了包含12种胡蜂、约7000张图像的数据集,采用多种数据增强策略优化训练效果。该系统可应用于生态监测、农业保护等领域,未来计划拓展更多昆虫类别识别能力。研究为生物多样性保护提供了高效的技术支持,相关代码已开源。

2026-01-12 12:38:55 745

原创 集装箱运输标识与条码识别系统:基于YOLO13-C3k2-LFE的高效检测方案

本文提出了一种基于YOLOv3-C3k2-LFE的高效集装箱二维码检测方案,通过改进网络结构、引入注意力机制和优化特征融合策略,显著提升了模型在复杂场景下的检测性能。实验结果表明,该方案在保持较高精度的同时,满足了实时识别的需求,具有实际应用价值。轻量化模型设计:针对边缘计算设备资源有限的特点,设计更轻量级的模型,降低计算复杂度多模态信息融合:结合红外成像、3D点云等多模态信息,提高极端条件下的识别能力自监督学习:减少对标注数据的依赖,降低数据采集成本端到端优化。

2026-01-12 12:08:32 732

原创 玫瑰叶片病害检测与分类:如何使用改进的yolo13-C3k2-RCB模型实现高精度识别?_1

YOLOv13-C3k2-RCB是在YOLO系列基础上的改进版本,特别针对玫瑰叶片病害检测任务进行了优化。该模型结合了最新的计算机视觉技术,通过创新的网络结构设计,实现了高精度的病害检测与分类。图2:YOLOv13-C3k2-RCB增强BiFPN结构细节图本文详细介绍了一种基于改进的yolo13-C3k2-RCB模型的玫瑰叶片病害检测方法。通过引入C3k2和RCB模块,模型在保持较高推理速度的同时,显著提高了检测精度。

2026-01-09 11:46:06 711

原创 答题卡学号识别与信息提取_YOLO11分割模型实现与ASF优化

本文提出了一种基于YOLO11分割模型的答题卡学号识别系统,通过引入ASF(自适应空间融合)模块优化分割性能。研究构建了包含10,000张标注图像的数据集,采用8:1:1划分训练/验证/测试集。实验结果表明,ASF模块使mIOU提升7.4%,准确率提高6.3%,在边缘设备上实现30FPS实时处理。系统在复杂场景下保持95%以上识别率,展现出良好的鲁棒性。未来工作将聚焦于降低计算复杂度、扩展多格式支持及探索无监督学习方法。该技术在教育评估领域具有重要应用价值。

2026-01-09 11:19:36 910

原创 管道守护者:基于YOLO11的腐蚀与裂纹智能检测系统研究

本文介绍了一种基于YOLO11的管道腐蚀与裂纹智能检测系统,通过深度学习技术实现了对管道内部缺陷的高精度检测。实验结果表明,该系统在测试集上取得了92.2%的mAP@0.5,能够满足实际工业检测的需求。多模态融合:结合红外、超声波等多种传感器数据,提高检测的全面性3D检测:实现对管道缺陷的三维重建和量化分析在线学习:支持持续学习新出现的缺陷类型,适应不断变化的检测需求边缘计算:优化模型大小,使其能够在边缘设备上高效运行随着深度学习技术的不断发展,智能检测系统将在工业安全领域发挥越来越重要的作用。

2026-01-03 14:57:04 952

原创 YOLOV10改进-BiFPN孔洞检测与识别_1

YOLOv10结合BiFPN改进的孔洞检测方法显著提升了小目标识别能力。BiFPN的双向跨尺度连接和加权特征融合机制有效解决了传统特征金字塔网络信息传递不足的问题,特别适合检测尺寸不一、形状不规则的孔洞。该方法通过多尺度特征融合增强了对小目标的捕捉能力,同时保持了较高的计算效率。实现上采用PyTorch构建BiFPN模块,结合自定义损失函数优化训练过程。实验评估显示在精确率、召回率和mAP等指标上均有提升。该技术可扩展到裂纹检测等类似工业检测任务,具有实际应用价值。

2026-01-03 14:24:17 618

原创 人员行为识别与异常检测:从摔倒、打架到坐姿站立行为的智能识别系统_1

本文提出了一种基于自注意力机制的人员行为识别与异常检测系统,结合标签自适应混淆和中心损失函数,实现了对摔倒、打架及坐姿站立等行为的精准识别。系统采用多尺度特征融合和时序建模技术,在公开数据集测试中准确率达95%以上。通过模型优化和硬件加速,系统具备实时处理能力,可广泛应用于安防监控、健康管理等领域。创新性的标签自适应方法动态调整混合标签权重,配合中心损失函数,显著提升了模型对复杂行为特征的识别鲁棒性。

2025-12-31 09:12:41 717

原创 【AI视觉】木材缺陷检测与分类:基于Mask R-CNN的智能识别系统

本文提出了一种基于Mask R-CNN的木材缺陷智能检测系统,旨在解决传统人工检测效率低、主观性强的问题。该系统通过ResNet-50-FPN特征提取网络、RPN候选区域生成和ROIAlign精确分割等技术,实现了对节子、裂纹、虫眼等多种木材缺陷的精准识别与分类。文章详细阐述了模型架构、数据集构建(包含5000张标注图像)及数据增强方法,展示了该技术在木材加工自动化检测中的应用潜力,为提升木材质量检测效率提供了可靠解决方案。

2025-12-31 08:50:53 675

原创 基于YOLO11-CSP-EDLAN的胎儿囊肿性水囊瘤智能检测系统 如何训练使用 胎儿发育异常识别 正常胎儿区分 医学影像分析

本文提出了一种基于YOLO11-CSP-EDLAN架构的胎儿囊肿性水囊瘤智能检测系统。该系统采用改进的深度学习算法,结合CSP网络结构和EDLAN双重注意力机制,专门针对超声影像中的小目标检测进行优化。通过构建包含5000张标注图像的数据集,并采用多任务损失函数和两阶段训练策略,系统在准确率(94.7%)、召回率(91.3%)等指标上表现优异。临床应用表明,该系统能显著提高检测速度(30秒/例)和一致性(诊断差异从25%降至8%),为胎儿发育异常的早期诊断提供了有效辅助工具。未来将进一步扩展3D检测和多模态

2025-12-30 17:02:58 595

原创 福寿螺尺寸分级检测:YOLO11-seg-EMSC模型实战与应用

本文提出了一种改进的YOLO11-seg-EMSC模型用于福寿螺尺寸分级检测。该模型通过EMSC模块实现多尺度特征融合和通道注意力机制,显著提升了检测精度。实验结果表明,在5000张标注图像的数据集上,该模型mAP达到0.923,优于主流检测算法。模型经过轻量化处理后可在移动设备实现实时检测,为福寿螺防控提供了有效技术支持。未来可进一步优化模型以适应更复杂的田间环境。

2025-12-30 16:42:52 913

原创 【深度学习实战】基于Faster R-CNN的黄瓜植株检测与识别系统详解

本文介绍了一个基于Faster R-CNN的黄瓜植株智能检测系统。该系统采用模块化设计,包含数据采集、模型训练、检测识别和可视化四个核心模块。通过构建包含5000张黄瓜植株图像的数据集,并采用Faster R-CNN算法进行优化训练,实现了对黄瓜植株生长状态和病虫害的高效检测。系统界面采用PyQt5开发,提供直观的功能导航和用户管理,为精准农业提供了智能化解决方案。实验表明,该系统能有效提升黄瓜植株检测的准确性和效率。

2025-12-26 09:16:25 976

原创 基于Faster R-CNN的黄瓜质量等级智能检测系统:从模型训练到实际应用

本文详细介绍基于Faster R-CNN的黄瓜质量智能检测系统。该系统通过2000张标注图像数据集,采用ResNet-50骨干网络和RPN结构,实现黄瓜定位和质量分级。训练中运用多种数据增强技术,并设计多任务损失函数,最终在测试集上达到87.3%的mAP。系统部署采用模型压缩技术,推理速度提升至35fps,准确率达89.2%,显著优于人工检测。该系统已应用于实际生产,支持批量处理和数据分析,未来可通过多模态融合和轻量化进一步提升性能。研究成果为农产品智能检测提供了实用解决方案。

2025-12-26 08:30:19 712

原创 CSDN相关中文文献检索方法

本文介绍了检索CSDN相关中文文献的方法与主题。可通过中国知网、万方、维普等数据库,使用"CSDN""开发者社区"等关键词组合检索,重点关注技术社区知识传播、用户行为动机、内容质量评价等研究方向。文献涉及CSDN的技术交流模式、知识共享行为、教育辅助作用等内容,部分研究还探讨了用户粘性、激励机制等问题。检索时可扩展关键词并结合会议论文、高校机构库等资源获取更多文献。

2025-11-27 15:27:49 345

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除