- 博客(14)
- 收藏
- 关注
原创 【实战】基于YOLO11-REPVGGOREPA实现双目标识别与定位系统_1
本文提出了一种基于YOLO11-REPVGGOREPA的双目标识别与定位系统,通过引入REPVGGOREPA结构对原始YOLO11进行优化。该系统在保持较高检测精度的同时显著提升了推理速度,实验结果显示mAP指标提升3.2%,推理速度提升18.7%。文章详细介绍了模型架构改进、数据集预处理流程和训练优化方法,包括REPVGGOREPA的重参数化技术、自适应特征融合模块等创新设计。提供的代码示例展示了图像预处理和模型训练的关键实现,为实时双目标检测任务提供了高效解决方案。该系统可广泛应用于自动驾驶、智能监控等
2026-01-11 11:19:21
483
原创 表格结构检测 - yolov10n-MFMMAFPN模型应用_0801
摘要 本文介绍了一种基于YOLOv10n-MFMMAFPN模型的表格结构检测方法。该模型结合多尺度特征融合和注意力机制,能够高效识别表格中的单元格、行和列等结构元素。系统采用117张预处理表格图像作为数据集,支持简单表格、复杂表格和合并单元格等多种类型。通过PyTorch实现,包含数据预处理、模型训练、评估和部署四个模块,实现了20ms的快速推理。实验表明,该方法在保持较高检测精度的同时,显著提升了处理速度,适用于文档数字化、信息提取等实际应用场景。项目采用CC BY 4.0协议开源,为表格结构识别研究提供
2026-01-11 10:50:53
596
原创 地铁站方向指示标志检测:基于YOLOv10n-VanillaNet的高效目标检测模型实现与优化
本文提出了一种基于YOLOv10n-VanillaNet的地铁站方向指示标志检测方法。针对地铁站复杂环境,该方法采用轻量化网络设计,通过动态锚框和注意力机制提升小目标检测性能。实验表明,模型在自建数据集(8,500张图像,12类标志)上达到92.3% mAP和45 FPS,优于主流轻量级检测器。消融实验验证了VanillaNet骨干和多层次损失函数的有效性,为地铁站智能化管理提供了可行方案。
2026-01-10 19:06:38
873
原创 行星星云识别与分类 --- YOLOv10n模型实现与优化_1
本文针对天文图像中行星与星云检测的挑战,提出了一种基于YOLOv10n-P2的检测算法。通过引入P2检测头、改进为四尺度检测机制、优化特征融合路径和损失函数设计,显著提升了模型的检测性能。实验结果表明,改进后的模型在mAP@0.5和mAP@0.5:0.95指标上分别达到0.912和0.705,比基线模型YOLOv8n提升3.7个百分点和6.7个百分点。本研究为天文图像中的行星与星云检测提供了高效解决方案,可应用于天文观测自动化和深空探测等领域,推动天文学研究的智能化发展。点击这里获取完整研究资料。
2026-01-07 16:15:43
554
原创 【深度学习】沉管隧道渗漏水缺陷检测与分类_yolov8-RepNCSPELAN_CAA
本文提出了一种基于改进YOLOv8模型的沉管隧道渗漏水缺陷检测系统。通过引入RepNCSPELAN_CAA网络结构,结合重参数化卷积和通道注意力机制,显著提升了模型对渗漏水特征的提取能力。系统采用10,000张标注图像构建数据集,并应用多种数据增强技术提高泛化性。实验表明,改进后的模型mAP@0.5达到0.928,优于主流目标检测算法。实际部署中,系统实现了30FPS的实时检测,缺陷发现率提升至92%,为隧道安全监测提供了高效解决方案。未来可进一步优化小目标检测能力并扩展至其他类型缺陷识别。
2026-01-07 15:49:34
662
原创 景观场景多目标检测与识别_Solo R101 FPN模型改进与实战
景观场景多目标检测与识别:Solo R101 FPN模型改进与实战 本文针对景观场景多目标检测任务,提出改进的Solo R101 FPN模型。景观检测面临目标多样性、背景复杂性、尺度变化大等挑战。传统方法在泛化能力和特征表达上存在局限,而深度学习方法特别是基于FPN的架构能有效应对这些问题。 改进策略包括: 引入SE注意力机制增强关键特征响应 优化FPN网络结构保留细节信息 采用Focal Loss解决类别不平衡问题 实验结果表明,改进模型在mAP指标上提升4.5%,小目标检测AP提高6.6%,推理速度略有
2026-01-04 14:58:30
866
原创 长曲棍球比赛中的角色识别与装备检测-mask-rcnn_x101-64x4d_fpn_1x_coco模型应用_3
本文探讨了基于改进Mask R-CNN模型的长曲棍球比赛角色识别与装备检测方法。通过采用X101-64x4d FPN骨干网络,结合10,000张精细标注的图像数据和多尺度数据增强技术,模型在运动员、球门和球的检测任务中取得74.2%的mAP,角色识别准确率达82.7%。文章详细介绍了模型架构、两阶段训练策略、改进的特征金字塔网络设计以及损失函数优化方法。实验结果表明,该方法显著优于传统目标检测模型,为比赛分析、裁判辅助和训练评估提供了有效技术支撑。
2026-01-04 14:30:39
568
原创 工业燃气设备多部件识别与检测:基于YOLO11-PSConv的保险丝旋塞、燃烧器等关键部件自动定位系统
本文提出了一种基于改进YOLO11-PSConv模型的工业燃气设备多部件自动检测系统。针对保险丝旋塞、燃烧器等关键部件检测的挑战,系统引入PSConv模块增强小目标特征提取能力,采用Focal Loss解决样本不平衡问题。实验表明,改进模型在测试集上达到92.5%的mAP@0.5,比原YOLO11提升4.3个百分点,小目标检测效果尤为显著。该系统已成功应用于工业现场,实现95%以上的检测准确率,有效提升了设备巡检效率和安全性。未来研究将聚焦模型轻量化、多模态融合等技术优化方向。
2026-01-01 16:48:01
722
原创 【柑桔新鲜度检测】基于Faster R-CNN的柑桔新鲜度评估系统
本文详细介绍了基于Faster R-CNN的柑桔新鲜度评估系统的设计与实现。通过构建合适的数据集、选择合适的模型架构、设计合理的损失函数和训练策略,我们实现了一个能够准确检测柑桔新鲜度的深度学习模型。实验结果表明,该模型在柑桔新鲜度检测任务上表现良好,平均精度均值(mAP)达到了0.91,能够满足实际应用的需求。多模态检测:结合柑桔的外观、气味、质地等多模态信息,提高检测准确性实时检测:优化模型结构,提高检测速度,实现实时柑桔新鲜度检测可解释性:增强模型的可解释性,让用户了解模型做出判断的依据。
2026-01-01 16:13:38
962
原创 基于YOLOv10n-GlobalEdgeInformationTransfer的小麦种子优质检测识别系统
小麦种子检测识别系统主要由数据采集模块、预处理模块、YOLOv10n模型训练模块和结果输出模块组成。系统采用端到端的深度学习架构,能够实现从原始图像到种子质量分类的完整流程。🔄数据采集模块负责获取小麦种子的图像数据,预处理模块对图像进行标准化和增强处理,YOLOv10n模型训练模块利用改进的目标检测算法进行特征提取和分类,最后结果输出模块将检测结果可视化并生成质量报告。📊数据集处理模块是系统的重要组成部分,负责深度学习数据集的验证、处理和管理。
2025-12-28 12:16:18
989
原创 比目鱼目标检测与识别_Cascade-RPN与Faster R-CNN结合改进算法详解及代码实现
本文提出了一种改进的目标检测算法,结合Cascade-RPN与Faster R-CNN的优势,通过多级区域提议网络和特征融合策略显著提升检测性能。创新点包括:1)多尺度特征融合机制(MS-FPN),提升小目标检测能力;2)自适应IoU阈值调整,自动优化训练过程;3)比目鱼损失函数,动态调整难易样本权重。实验结果表明,该算法在PASCAL VOC、MS COCO等数据集上mAP提升2-5个百分点,同时保持较好的推理速度(6.3 FPS),综合性能优于现有方法。消融实验验证了各模块的有效性,为复杂场景下的目标检
2025-12-28 11:37:45
723
原创 YOLO11-C3k2-MBRConv5在珊瑚图像检测中的应用与改进_1
本文系统梳理了YOLO系列目标检测模型的发展历程与技术演进,从经典的YOLOv3到前沿的YOLOv9,详细分析了各代模型的创新点与性能特点。同时介绍了MMDetection框架中的DETR、Faster R-CNN等代表性模型,探讨了Transformer架构和轻量化技术的最新进展。针对实际应用场景,提供了模型选择指南和性能优化建议,为开发者在目标检测领域的实践提供了全面参考。文章通过代码示例和性能数据展示了不同模型的适用场景,帮助读者根据需求选择最优解决方案。
2025-12-27 16:38:21
815
原创 【自卸车检测】使用YOLO11-C3k2-RFCAConv实现多部件检测与识别
本文提出了一种基于改进YOLOv11的自卸车多部件检测方法YOLO11-C3k2-RFCAConv。该方法通过引入C3k2模块增强特征提取能力,结合RFCAConv注意力机制提升关键部件识别精度。模型在5000张自卸车图像数据集上测试,实现了30FPS的实时检测速度,部件检测mAP提升3.2%,小部件召回率提高4.5%。创新点包括:1)C3k2模块的并行分支设计;2)RFCAConv多尺度注意力机制;3)针对工地场景的数据增强策略。该方法为自卸车安全监测和智能管理提供了有效解决方案。
2025-12-27 16:18:10
679
原创 【论文阅读笔记】CutMix:数据增强
本文对比了Mixup、Cutout和CutMix三种数据增强方法,重点介绍了CutMix的原理及优势。CutMix通过裁剪并替换图像区域来混合样本,既保留了区域dropout的优点,又能提升模型定位能力。文章详细解释了生成掩码M和混合比例λ的过程,并展示了代码实现,为图像识别任务提供了一种有效的增强策略。
2025-11-27 16:11:50
276
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅