- 博客(10)
- 收藏
- 关注
原创 芭蕾舞者姿态识别与检测_YOLO11-C3k2-REPVGGOREPA模型实现
本文提出了一种改进的YOLO11模型(YOLO11-C3k2-REPVGGOREPA)用于芭蕾舞者姿态识别。通过引入动态核选择的C3k2模块和优化的REPVGGOREPA残差结构,模型在自建芭蕾舞数据集上达到0.845 mAP,比基准YOLO11提升10.9%。消融实验验证了各模块的有效性,轻量化处理后模型缩小至12MB,推理速度达58.6FPS。该模型已成功应用于芭蕾教学、动作分析等场景,为舞蹈艺术与AI结合提供了新思路。
2026-01-12 10:16:14
823
原创 运动场不良行为检测_YOLOv10n-P6模型复现教程
运动场不良行为检测系统基于YOLOv10n-P6模型实现,摘要如下: 模型特性:采用YOLOv10n-P6最新目标检测架构,支持1280×1280高分辨率输入,结合CSPDarknet骨干网络和FPN+PAN特征融合,专为运动场实时监控优化。 实施流程: 环境配置:搭建Python 3.8+虚拟环境,安装PyTorch和Ultralytics库 数据集准备:需5000+标注图像,覆盖攀爬、乱扔垃圾等5-10类不良行为 模型训练:100个epoch训练周期,采用AdamW优化器和数据增强策略 性能评估:测试集
2026-01-12 09:56:27
3080
原创 【深度学习实战】基于YOLOv8-SPDConv的签名检测与识别系统
SPDConv(Spatial Pyramid Depthwise Convolution)是一种创新的卷积模块,它通过空间金字塔结构增强了网络的多尺度特征提取能力。🔍SPDConv的核心思想是将输入特征图分割成不同尺度的子区域,然后使用深度可分离卷积分别提取各尺度特征,最后将结果融合。这种结构使得网络能够同时关注局部细节和全局上下文信息,特别适合处理签名这种多尺度变化大的目标。])return x# 4. 加载预训练模型并改进# 5. 替换C2f模块为C2fSPD。
2026-01-10 12:26:53
690
原创 YOLO11-C2BRA改进突破:虾病检测与识别系统的精准识别新方案
本文提出了一种基于改进YOLO11的虾病检测算法YOLO11-C2BRA,通过引入C2BRA注意力机制和自适应特征金字塔网络,显著提升了虾病识别精度。研究构建了包含12,000张图像的高质量虾病数据集,采用数据增强策略优化模型训练。实验表明,改进模型在mAP@0.5指标上达到0.893,优于主流检测算法。通过模型轻量化处理,实现了边缘设备部署,检测准确率达87.6%,处理速度满足实时需求。该系统可有效预警虾病爆发,为水产养殖智能化发展提供了技术支持。未来研究将探索模型结构优化和多模态信息融合方向。
2026-01-10 10:20:18
816
原创 芝麻病害识别模型改进_yolo11-C3k2-MambaOut-UniRepLK实现
本文提出了一种改进的YOLO11模型,通过引入C3k2、MambaOut和UniRepLK等创新模块,构建了高效准确的芝麻病害识别系统。实验结果表明,改进模型在芝麻病害识别任务上取得了优异的性能,mAP达到92.8%,同时保持了较高的处理速度。扩大数据集规模,增加更多病害类型和生长阶段的图像研究更轻量化的模型架构,适应边缘计算设备探索多模态信息融合,结合气象数据提高预测能力开发更完善的病害防治决策支持系统芝麻病害识别技术的发展将为智慧农业提供有力支持,助力芝麻产业的高质量发展。🌱。
2026-01-09 19:12:36
786
原创 YOLO11-C3k2-RVB|基于改进YOLO的PCB缺陷检测新方案
本文提出了一种改进的YOLO11-C3k2-RVB模型用于PCB缺陷检测。该模型在YOLOv11基础上引入C3k2跨尺度特征融合模块和RVB残差视觉注意力模块,显著提升了检测性能。实验结果表明,该模型在PCB-Defect-DB数据集上达到95.2%的mAP@0.5和88.7%的mAP@0.5:0.95,推理速度达85.3FPS,优于基线模型。消融实验验证了各模块的有效性,C3k2和RVB模块分别带来1.7%和2.4%的mAP提升。该方案为PCB制造质量检测提供了高效可靠的解决方案。
2026-01-07 11:52:26
610
原创 基于YOLOv8-P2的炼油设施智能检测与识别方案详解
本文介绍了基于YOLOv8-P2的炼油设施智能检测系统,该系统通过改进的深度学习模型实现高效设备检测。文章详细阐述了YOLOv8-P2模型的创新架构和性能优势,包括P2特征金字塔结构和小目标检测能力提升。同时介绍了包含50,000张图像的炼油设施数据集构建过程,以及渐进式训练策略和边缘计算优化方案。实际应用案例显示,该系统能有效识别安全隐患,降低故障率35%,年经济效益超2000万元。未来计划扩展3D视觉和多传感器技术,推动工业智能检测发展。
2026-01-06 18:18:22
600
原创 智能避障新突破:基于Mask R-CNN的高精度障碍物检测系统详解
本文介绍了两项计算机视觉领域的重要技术:基于改进Mask R-CNN的智能避障系统和YOLO系列目标检测算法的演进。智能避障系统通过引入Group Normalization机制和自适应损失函数,在KITTI数据集上实现了82.4%的mAP和22FPS的实时性能,显著提升了复杂场景下的障碍物检测能力。YOLO系列部分概述了从v1到v13的发展历程,重点分析了YOLOv1的革命性创新及其优缺点。两项技术都展示了深度学习在目标检测和实例分割领域的突破性进展,为自动驾驶和机器人应用提供了可靠的技术支持。
2026-01-06 17:48:29
1006
原创 基于YOLOv8-Unireplknet的水果识别与质量检测系统
本文提出了一种基于YOLOv8-UniRepLKnet的水果识别与质量检测系统。该系统采用UniRepLKnet作为骨干网络,结合大核卷积重参数化技术,能够高效捕获多尺度特征,实现对苹果、香蕉等10种水果的高精度检测。创新性技术包括:1)多尺度空洞卷积DilatedReparamBlock模块,训练时使用5个不同空洞率的分支,推理时合并为等效13×13大核;2)引入SE注意力机制增强特征表达能力;3)优化检测头实现质量分级功能。实验表明,系统在10000张水果图像数据集上表现优异,检测精度和速度均优于传统方
2025-11-12 19:47:29
668
原创 基于YOLO13-C3k2-IDWB的珠宝饰品检测与分类系统_耳环手链项链自动识别技术研究
本文详细介绍了一种基于YOLO13-C3k2-IDWB的珠宝饰品检测与分类系统,通过引入C3k2模块和IDWB注意力机制,有效提升了模型对珠宝饰品的检测精度和鲁棒性。系统在多个应用场景中表现出色,为珠宝行业的智能化管理提供了有力支持。扩展识别类别:增加更多珠宝饰品类别的识别能力,如戒指、胸针、手镯等。3D检测技术:研究珠宝饰品的三维检测技术,获取更完整的珠宝饰品信息。跨平台部署:优化模型结构,实现在更多边缘设备上的高效部署。多模态融合:结合光谱信息、材质信息等多模态数据,提升珠宝饰品识别的准确性。
2025-11-12 19:15:58
638
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅