- 博客(54)
- 收藏
- 关注
原创 【SCI/核心直发】基于ACPSO-EI-Kriging的多虚拟电厂主从博弈/基于APVP-MHA-MTL的多变量时间序列预测
本文提出两种创新算法模型:1)基于ACPSO-EI-Kriging的主从博弈模型,解决碳交易机制下配电系统运营商与多虚拟电厂的优化调度问题,采用双层优化框架结合Kriging代理模型和自适应混沌粒子群算法;2)APVP-MHA-MTL多变量时间序列预测模型,融合自适应峰谷感知、多头注意力和多任务学习,实现对电热冷气负荷的精准预测。两种模型均采用Python实现,具有高创新性和实用价值。
2026-01-27 23:22:06
378
原创 【免费代码分享】10种卷积神经网络融合BiLSTM的多变量时间序列预测
本文介绍了一个基于Python的原创多变量时间序列预测模型,创新性地融合了10种卷积神经网络与BiLSTM网络。该模型包含传统卷积、深度可分离卷积、因果卷积等10种各具特色的卷积结构,分别针对不同应用场景优化。模型优势包括:保证预测因果性、多尺度特征提取、参数轻量化、注意力机制增强可解释性等。代码注释详尽,实现于Jupyter Notebook平台,适用于高维多变量时序预测任务。该成果具有较高创新价值,目前限量分享完整实现代码。
2026-01-27 23:21:09
539
原创 【重磅原创改进代码】基于自适应峰谷感知(APVP)多头注意力(MHA)多任务学习(MTL)的多变量多输出时间序列预测
本文提出了一种创新的APVP-MHA-MTL时间序列预测模型,结合自适应峰谷感知和多头注意力机制,实现对多变量负荷的精准预测。模型通过APVP模块动态检测局部极值特征,与MHA深度融合增强对关键时段的关注,并采用多任务学习框架共享底层特征。数据预处理包含周期性编码和滑动窗口技术,模型训练引入峰谷加权损失函数。实验结果表明,该方法能有效提升对复杂负荷序列中关键转折点的捕捉能力,实现更准确、鲁棒的预测性能。
2026-01-18 23:41:52
807
原创 详解最新PatchTST时间序列算法的原理及代码实现/【原创代码改进】基于贝叶斯优化的PatchTST综合能源负荷多变量时间序列预测
摘要:PatchTST是一种新型时间序列预测Transformer模型,通过将时间序列划分为块(patch)进行建模,有效解决了传统方法在长序列处理和局部依赖捕捉方面的不足。该方法结合通道独立性与块级注意力机制,在保持各变量特性的同时提升计算效率。研究团队开发了基于贝叶斯优化的Python实现方案,通过Optuna自动调优模型超参数,在能源负荷数据集上验证了其优越性能。实验表明,该方法相比传统模型能显著降低预测误差(如MSE),为时间序列预测提供了新的有效解决方案。
2026-01-14 18:45:28
568
原创 传统机器学习(如xgboost、随机森林等)和深度学习(如LSTM等)在时间序列预测各有什么优缺点?/【原创改进代码】基于RFAConv(感受野注意力卷积)-BiGRU(双向门控循环单元)多变量时间序
摘要:本文提出了一种创新的RFAConv-BiGRU模型用于多变量时间序列预测。该模型结合了感受野注意力卷积(RFAConv)和双向门控循环单元(BiGRU)的优势:RFAConv通过动态权重分配解决传统卷积的"一刀切"问题,能精准捕捉局部关键特征;BiGRU则负责建模长时序依赖关系。创新性地将计算机视觉领域的RFAConv应用于时序预测,通过三维张量转换实现卷积与循环网络的有机结合。模型在光伏出力等时序数据上表现优异,RFAConv能自动放大突变点权重,BiGRU则有效串联关键时段特征
2026-01-14 18:43:22
1030
原创 【原创改进代码】基于VPPSO(速度暂停粒子群算法)-CNN-BiGRU-Attention的多变量时间序列回归预测
本文提出一种基于VPPSO-CNN-BiGRU-Attention的多变量时间序列预测模型。该模型通过改进的速度暂停粒子群算法(VPPSO)优化CNN-BiGRU网络超参数,其中VPPSO引入速度暂停机制,有效平衡探索与开发能力。模型采用CNN提取空间特征、BiGRU捕获时序依赖、注意力机制聚焦关键信息的三重特征提取架构。实验表明,该方法能自适应预测风电、气象等多变量序列,无需调试即可直接应用。评估指标显示模型在MAPE、RMSE等性能上表现优异,为时间序列预测提供了新的混合优化解决方案。
2026-01-14 18:40:41
702
原创 【重磅原创改进代码】基于自适应峰谷感知(APVP)多头注意力(MHA)多任务学习(MTL)的多变量多输出时间序列预测
本文提出一种基于自适应峰谷感知(APVP)多头注意力(MHA)和多任务学习(MTL)的多变量时间序列预测模型。该模型创新性地将APVP模块与MHA机制融合,通过可学习权重动态增强对负荷序列关键峰谷时段的关注。模型采用LSTM网络提取时序特征,结合多任务框架实现电、热、冷、气四种负荷的并行预测。实验表明,该方法显著提升了复杂能源负荷预测的精度和鲁棒性,尤其在峰谷时段表现突出。模型采用滑动窗口构建输入特征,包含周期性编码、滞后特征和移动平均等丰富特征工程,并通过加权损失函数优化训练过程。
2026-01-14 18:39:43
1127
原创 详细对比!10种卷积神经网络融合BiLSTM的多变量时间序列预测(python代码)
本文提出10种卷积神经网络与BiLSTM融合的多变量时间序列预测模型,包括传统Conv1D、深度可分离卷积、因果卷积等创新结构。每种模型详细分析其优缺点,如深度可分离卷积计算高效但表达能力受限,空洞卷积可扩展感受野但需调优参数。模型针对不同应用场景设计,涵盖轻量化、多尺度建模、注意力增强等特性。实验在Python平台实现,代码注释详尽,具有较高创新价值。
2026-01-06 20:35:50
601
原创 【原创改进代码】基于RFAConv(感受野注意力卷积)-BiGRU(双向门控循环单元)多变量时间序列预测
本文提出了一种创新的多变量时间序列预测模型RFAConv-BiGRU,将感受野注意力卷积(RFAConv)与双向门控循环单元(BiGRU)相结合。RFAConv通过动态分配感受野权重,解决了传统卷积的"一刀切"问题,采用三步操作实现局部特征加权;BiGRU则负责捕捉长距离时间依赖。模型通过将时间序列数据重塑为类图像格式,实现RFAConv特征提取与BiGRU时序建模的无缝衔接。实验结果显示该模型在预测任务中表现优异(MSE=0.0084,R²=0.907),有效结合了局部特征关注与全局时
2026-01-06 20:33:08
700
原创 传统机器学习(如xgboost、随机森林等)和深度学习(如LSTM等)在时间序列预测各有什么优缺点?
传统机器学习和深度学习在时间序列预测中各有优劣。传统方法(XGBoost、随机森林)训练快、可解释性强,适合中小数据集,但对长期依赖和复杂模式建模能力有限,依赖特征工程。深度学习方法(LSTM、Transformer)能自动学习时序特征,擅长捕捉长期依赖和复杂动态,但需要大量数据、计算成本高且可解释性差。选择时需权衡数据量、计算资源、可解释性需求等因素。
2026-01-06 20:31:17
450
原创 【原创代码改进】考虑共享储能接入的工业园区多类型负荷需求响应经济运行研究
本文提出了一种考虑共享储能接入的工业园区多类型负荷需求响应经济运行模型。通过建立可平移、可转移、可削减负荷的标准模型,并引入共享储能协同调度机制,实现园区群日运行成本优化。模型基于MATLAB-YALMIP-Cplex/Gurobi平台构建,考虑3个园区差异化负荷特性,分析不同共享储能服务费下的使用率和成本变化。结果表明,该模型能有效协调柔性负荷调节与储能充放电计划,显著降低园区群整体运行成本。代码具有高度可拓展性,适用于电力系统优化调度和共享储能相关研究。
2025-12-29 22:52:33
940
原创 【原创改进代码】10种卷积神经网络融合BiLSTM的多变量时间序列预测
摘要:本文提出10种卷积神经网络与BiLSTM融合的多变量时间序列预测模型,采用Python在Jupyter Notebook平台实现。模型创新性地结合了传统Conv1D、深度可分离卷积、因果卷积、空洞卷积等多种卷积结构,每种结构针对性地解决不同预测场景中的特征提取问题。模型注释详尽,具有高创新性,适用于金融、气象等领域的多尺度时间序列预测任务。通过卷积网络提取局部特征后,BiLSTM负责建模长期依赖关系,形成优势互补。该实现特别关注计算效率、多尺度特征融合和预测因果性等关键问题。
2025-12-27 11:15:31
375
原创 【原创改进代码】基于RFAConv(感受野注意力卷积)-BiGRU(双向门控循环单元)多变量时间序列预测
本文提出了一种创新的多变量时间序列预测模型,将RFAConv(感受野注意力卷积)与BiGRU(双向门控循环单元)相结合。RFAConv通过动态分配感受野权重,解决了传统卷积"一刀切"的问题,能够精准捕捉时间序列中的关键局部特征。模型通过三步操作实现特征加权:池化聚合、1×1卷积扩展通道、softmax归一化权重。BiGRU则负责捕捉长距离依赖关系,形成"局部+全局"的协同预测机制。实验结果显示该模型在多个评价指标上表现优异(R²达0.907),特别适用于光伏出力等具有
2025-12-27 11:14:33
618
原创 创新点解读:基于贝叶斯优化PatchTST的时间序列预测算法(附代码实现)
摘要:本文提出一种基于贝叶斯优化的PatchTST时间序列预测方法。PatchTST通过将时序数据分块处理,有效提升Transformer对长序列的建模能力。采用贝叶斯优化自动搜索关键超参数,在能源负荷预测任务中验证了方法的有效性。实验表明,该方法相比传统模型能显著降低预测误差(如MSE),并实现自动化调参。附完整Python代码实现,包含数据预处理、模型构建、优化训练及评估全流程。该研究为时序预测任务提供了新的解决方案,兼具理论创新和工程应用价值。
2025-12-27 11:13:31
747
原创 详细对比!10种卷积神经网络融合BiLSTM的多变量时间序列预测(python代码)
本文提出10种卷积神经网络与BiLSTM融合的多变量时间序列预测模型,基于Python实现。模型涵盖传统1D卷积、深度可分离卷积、因果卷积等10种变体,各具特色:传统Conv1D+BiLSTM结构简单但感受野受限;深度可分离卷积计算高效但特征表达能力较弱;空洞卷积能扩大感受野但需精细调参。创新性地将不同卷积特性与BiLSTM结合,形成互补优势,适用于各类时序预测场景。代码注释详尽,具有较高实用价值和研究意义,为多变量时间序列预测提供了多样化的解决方案。
2025-12-27 11:12:34
1072
原创 基于CNN(卷积神经网路)-BiLSTM(双向长短期记忆网络)-Attention(注意力机制)的时间序列预测python代码
本文提出了一种基于CNN-BiLSTM-Attention的时间序列预测模型。该模型通过CNN提取局部特征,BiLSTM捕获双向时序依赖,并结合Attention机制动态聚焦关键时间步。实验表明,相比单一LSTM、BiLSTM和CNN-BiLSTM模型,该组合模型在预测精度上具有明显优势(MSE降低16.4%)。该模型特别适用于处理非平稳、多尺度的复杂时间序列数据,如电力负荷、金融波动等场景。研究通过Python/TensorFlow实现,并提供了完整的训练流程和性能对比分析。
2025-12-21 22:06:23
1117
原创 创新点解读:基于非线性二次分解的Ridge-RF-XGBoost时间序列预测(附代码实现)
本文提出了一种创新的Ridge-RF-XGBoost时间序列预测模型,采用非线性二次分解策略将原始序列分为线性趋势项和两级非线性残差项。首先使用岭回归捕捉线性结构,随机森林拟合一级非线性残差,XGBoost处理二级非线性残差。通过网格搜索和时间序列交叉验证优化各子模型参数,该方法有效结合了不同算法的优势:岭回归处理线性趋势,随机森林捕捉局部非线性,XGBoost挖掘深层特征。实验表明,该模型在多个真实数据集上的MSE和MAE指标优于主流基准模型,具有良好的泛化性和可扩展性,为复杂时间序列预测提供了高效解决方
2025-12-21 22:05:04
1038
原创 创新点解读:基于贝叶斯优化PatchTST的时间序列预测算法(附代码实现)
本文提出一种基于贝叶斯优化的PatchTST时间序列预测方法。PatchTST通过将时间序列划分为局部子序列(patches)并映射为嵌入向量,有效解决了传统Transformer在长序列建模中的计算复杂度高和注意力分散问题。采用贝叶斯优化自动搜索模型关键超参数,构建了高斯过程代理模型指导参数调优。实验表明,该方法在综合能源负荷预测任务中显著提升了性能指标(如MSE降低百分比),验证了自动化超参数调优的有效性。创新性地结合了深度时序建模与智能优化算法,为时间序列预测提供了高效解决方案。
2025-12-21 22:04:27
1247
原创 【原创代码分享】基于TOC(龙卷风-科里奥利力优化算法)-XGBoost的时间序列预测模型【原创代码分享】基于线性回归和XGBoost的混合时间序列分解预测
本文提出两种创新时间序列预测模型:1)基于TOC-XGBoost的优化框架,利用龙卷风优化算法动态调整XGBoost超参数,测试集MAE降至0.0380,较基准提升5%;2)线性回归与XGBoost混合分解模型(LN-TSDM),通过分解时序数据的线性和非线性成分分别建模,组合预测R²达0.6896,优于单一模型。两种方法均采用Python实现,具有详细注释,为风光负荷、天气等时序预测任务提供了高效解决方案。
2025-12-17 19:20:50
813
原创 为什么XGBoost在绝大多数情况下都比深度学习算法效果好?甚至秒杀各种新提出的算法!原创未发表!!基于非线性二次分解的Ridge-RF-XGBoost时间序列预测
摘要:研究表明,XGBoost在结构化数据的回归与分类任务中持续优于深度学习模型。通过构建分段常数函数,XGBoost能有效捕捉特征间的高阶交互,而无需复杂特征工程。相比DNN对数据规模和质量的高要求,XGBoost具有更强的泛化能力、鲁棒性和可解释性。实际应用中,XGBoost在Kaggle竞赛和工业场景中占据主导地位。研究还提出了一种基于非线性二次分解的Ridge-RF-XGBoost混合模型,通过分解时间序列并分别建模,充分发挥各算法优势,在多个数据集上取得了优于现有方法的性能。
2025-12-17 19:18:59
1025
原创 【原创代码分享】基于融合SPDConv-GSConv-Agent Attention的时间序列预测模型【原创代码分享】基于非线性二次分解的Ridge-RF-XGBoost时间序列预测
本文提出了四种创新的时间序列预测模型:1) SPDConv-BiLSTM模型,通过无损下采样保留时序细节;2) GSConv-BiLSTM模型,结合标准卷积与深度可分离卷积的优势;3) CNN-AgentAttention-BiGRU模型,利用代理注意力机制降低计算复杂度;4) 非线性二次分解的Ridge-RF-XGBoost混合模型,分层处理线性和非线性成分。这些模型均采用Python实现,具有详细注释,创新性地将计算机视觉领域的先进技术应用于时间序列预测任务,在保持计算效率的同时显著提升了预测精度。
2025-12-16 18:05:02
992
原创 【原创改进代码】基于RFAConv(感受野注意力卷积)-BiGRU(双向门控循环单元)多变量时间序列预测【原创代码改进】基于贝叶斯优化的PatchTST综合能源负荷多变量时间序列预测
本文提出两种创新时间序列预测模型:1)RFAConv-BiGRU模型将感受野注意力卷积(RFAConv)与双向门控循环单元(BiGRU)结合,通过动态分配感受野权重解决传统卷积的"一刀切"问题,在光伏数据预测中取得R²=0.907的优异表现;2)Bayes-PatchTST模型采用贝叶斯优化自动搜索PatchTST超参数,通过序列分块和Transformer架构提升能源负荷预测精度。两种模型均基于Python实现,代码注释详细,具有创新性和实用性。
2025-12-16 18:02:36
1156
原创 【原创代码改进】基于IVY(常青藤优化算法)-BiTCN(双向时域卷积网络)-BiGRU(双向门控循环单元)的多变量时间序列回归
摘要:本文提出了一种基于IVY-BiTCN-BiGRU的多变量时间序列回归预测模型。该模型结合了最新提出的常青藤优化算法(IVYA)、双向时域卷积网络(BiTCN)和双向门控循环单元(BiGRU),能够自适应预测风电负荷、电价、气象等多种时间序列数据。IVYA算法模拟了常春藤植物的生长模式,具有保持种群多样性的特点;BiTCN通过双向机制和膨胀卷积有效捕捉长期时间依赖;BiGRU则整合了前后向信息增强上下文理解。模型在MATLAB平台实现,具有即插即用特性,无需调试即可应用于各类时间序列预测任务。参考文献显
2025-12-15 19:49:51
547
原创 【原创改进代码】基于VPPSO(速度暂停粒子群算法)-CNN-BiGRU-Attention的多变量时间序列回归预测
本文提出了一种基于VPPSO-CNN-BiGRU-Attention的多变量时间序列预测模型。该模型结合了改进的粒子群算法(VPPSO)和深度学习架构,通过CNN提取局部特征,BiGRU建模长期依赖关系,并引入注意力机制聚焦关键信息。相比传统方法,该模型能自适应处理风电、光伏、气象等多变量数据,无需调试即可实现10%-30%的预测精度提升。实验表明,该模型在能源、金融等领域的多变量时序预测任务中表现出优异的性能。
2025-12-15 19:48:45
680
原创 【原创改进代码】基于RFAConv(感受野注意力卷积)-BiGRU(双向门控循环单元)多变量时间序列预测
本文提出了一种创新的RFAConv-BiGRU模型用于多变量时间序列预测。该模型将感受野注意力卷积(RFAConv)与双向门控循环单元(BiGRU)相结合,RFAConv通过动态分配感受野权重解决传统卷积的局限性,BiGRU则负责捕捉长时序依赖关系。实现上采用Python/Jupyter Notebook平台,包含详细注释。模型在光伏出力预测等任务中表现出色,关键指标R²达0.907。创新点在于将原本用于图像处理的RFAConv改进应用于时序数据,通过局部特征加权和全局时序建模的协同配合,显著提升了预测精度
2025-12-15 19:47:00
1021
原创 【代码分享】考虑电池储能寿命损耗和电价型需求响应的微电网经济调度【代码分享】基于模糊机会约束的电力系统低碳优化调度
摘要:本文提出了考虑电池储能寿命损耗和电价型需求响应的微电网经济调度模型。通过构建分段的电池寿命损耗模型,将放电深度与循环寿命的非线性关系转化为可求解的混合整数线性规划问题。模型包含五类价格型需求响应负荷,采用YALMIP建模并调用GUROBI求解器优化。结果显示该模型能有效平衡系统经济性与储能寿命,为微电网优化运行提供决策依据。
2025-12-14 22:26:17
1083
原创 详解最新PatchTST时间序列算法的原理及代码实现【原创代码改进】基于贝叶斯优化的PatchTST综合能源负荷多变量时间序列预测
摘要:本文介绍了一种新型时间序列预测模型PatchTST,该模型将视觉领域的patch概念引入一维时间序列处理,通过划分时间块降低计算复杂度并提升局部模式捕捉能力。研究实现了基于贝叶斯优化的PatchTST模型,采用Optuna框架自动调优超参数,在综合能源负荷数据上验证了模型性能。实验表明,该方法相比传统Transformer模型具有更高预测精度和效率,MSE指标显著降低,为时间序列预测提供了新的解决方案。
2025-12-14 22:24:50
883
原创 【原创改进代码】考虑Copula相关性和热泵灵活性的风电光伏出力波动平抑优化策略
摘要:针对农村地区风光并网波动问题,提出一种基于Copula函数和蓄热式电采暖的优化平抑策略。采用Frank-Copula函数建模风光出力相关性,通过K-means聚类生成典型场景;建立电采暖系统热力动态模型,以等效上网功率波动最小化为目标,利用YALMIP-CPLEX求解优化问题。结果表明,该方法能有效平抑风光出力波动,同时保障用户热舒适性,为乡村微网运行提供可行解决方案。
2025-12-14 22:22:42
319
原创 【原创代码改进】基于贝叶斯优化的PatchTST综合能源负荷多变量时间序列预测
本文提出了一种基于贝叶斯优化的PatchTST模型,用于综合能源负荷的多变量时间序列预测。该方法通过Optuna框架自动优化Transformer架构的关键参数,包括d_model、n_heads等超参数。模型采用patch分块策略处理时序数据,结合多头自注意力机制,有效提升了长序列预测性能。实验结果表明,贝叶斯优化显著降低了MSE等指标,验证了自动化调优在时序预测中的有效性。该实现采用Python在Jupyter Notebook中完成,确保了实验的可复现性。
2025-12-07 08:09:04
1462
原创 【原创代码改进】基于IVY(常青藤优化算法)-BiTCN(双向时域卷积网络)-BiGRU(双向门控循环单元)的多变量时间序列回归/基于IVY(常青藤优化算法)-CNN-BiGRU(双向门控循环单元)-
本文提出两种基于常青藤优化算法(IVYA)的深度学习模型:IVY-CNN-BiGRU-Attention和IVY-BiTCN-BiGRU,用于多变量时间序列回归预测。IVYA算法模拟常春藤生长模式,具有种群多样性保持能力。两种模型分别结合CNN/BiTCN进行特征提取,BiGRU处理序列依赖关系,并引入注意力机制增强关键信息捕捉。模型适用于风电、光伏、电价等多元时间序列预测,具有自适应性强、无需调试的特点。实验表明,该组合模型能有效处理复杂时序模式,在电力负荷、气象预测等领域展现良好性能。相关成果发表于中科
2025-12-06 18:07:43
620
原创 【原创改进代码】考虑Copula相关性和热泵灵活性的风电光伏出力波动平抑优化策略
摘要:针对农村地区风光资源丰富但并网波动大的问题,本研究提出基于Copula函数的风光出力场景生成方法,结合蓄热式电采暖系统建立波动平抑优化模型。通过Copula理论有效刻画多风电场出力相关性,采用ETP模型构建集群电采暖系统,形成兼顾供暖需求和电网稳定的优化策略。研究为风光消纳和电网平稳运行提供了创新解决方案,配套的MATLAB-YALMIP-CPLEX/Gurobi实现平台验证了方法的有效性。成果对促进农村清洁能源利用和电力系统优化调度具有重要价值。
2025-12-06 17:57:33
397
原创 【原创代码分享】基于TOC(龙卷风-科里奥利力优化算法)-XGBoost的时间序列预测模型/原创未发表!!基于非线性二次分解的Ridge-RF-XGBoost时间序列预测
本文提出两种创新的时间序列预测模型:1)基于TOC-XGBoost的优化框架,利用龙卷风优化算法动态调整XGBoost超参数,测试集MAE降至0.0380,较传统方法提升5%;2)非线性二次分解模型,将序列分解为线性、非线性1和非线性2三部分,分别采用Ridge、RF和XGBoost处理,通过网格搜索优化参数。两种方法均显著提升预测精度,其中TOC-XGBoost在R²指标上达到0.9158,分解模型则通过分治策略更好地捕捉复杂时序特征。研究为时间序列预测提供了新的优化思路和建模方法。
2025-12-04 19:24:06
1160
原创 【代码分享】考虑电池储能寿命损耗和电价型需求响应的微电网经济调度
摘要:本文基于MATLAB-YALMIP-GUROBI/CPLEX平台,开发了一个考虑电池储能寿命损耗和电价型需求响应的微电网经济调度模型。模型创新性地采用分段线性化方法构建电池寿命损耗模型,基于放电深度区间划分和雨流计数法原理,将非线性寿命损耗转化为可求解的混合整数线性规划问题。同时整合了三类价格型需求响应机制,通过负荷转移和弹性调整实现用电成本优化。该模型以购售电成本、燃料成本和储能寿命损耗成本最小化为目标,通过对比分析验证了储能寿命损耗对调度策略的影响,为微电网优化运行提供了有效工具。
2025-12-04 19:21:04
1024
原创 【原创代码改进】基于SCSSA(改进麻雀搜索算法)-CNN-BiGRU(双向门控循环单元)-Attention的多变量回归预测
本文提出一种基于改进麻雀搜索算法(SCSSA)优化CNN-BiGRU-Attention的多变量时间序列回归预测模型。该模型融合了折射反向学习、正余弦策略和柯西变异机制改进的麻雀算法,结合CNN提取局部特征、BiGRU处理时序依赖和注意力机制强化关键信息的能力,实现对风电、光伏、气象等多变量数据的自适应预测。实验表明,该模型在保持原有算法时间复杂度的同时,显著提升了预测精度和鲁棒性。代码注释详细,可直接应用于各类时间序列预测任务,具有较强实用性和创新性。
2025-12-03 23:19:41
837
原创 【代码分享】基于模糊机会约束的电力系统低碳优化调度
本文提出了一种基于模糊机会约束的电力系统低碳优化调度方法,采用Matlab-Yalmip-Cplex/Gurobi平台实现。针对风电并网带来的不确定性,引入梯形模糊参数将模糊约束清晰化处理。模型包含火电、水电、储能及风光机组,考虑机组启停时间、功率平衡等约束,目标函数综合运行成本、弃风弃光惩罚和碳交易成本。通过分段线性化技术处理非线性约束,最终转化为混合整数线性规划问题求解。程序模块化设计,注释清晰,有效解决了含不确定性的电力系统优化调度问题。
2025-12-03 23:17:57
324
原创 【原创代码改进】基于“等效储能聚合模型”的含空调集群微电网经济调度
摘要:本文提出了一种基于等效储能聚合模型的微电网经济调度方法,通过虚拟电池模型将空调集群聚合为储能单元进行优化调度。该方法利用一阶热参数模型表征空调温控特性,建立等效储能方程,显著降低了优化问题的计算复杂度。相比单独建模,聚合方法减少了变量数量,简化了约束条件,提高了调度效率和系统稳定性。研究采用Matlab-Yalmip平台,结合CPLEX/Gurobi求解器实现,为含空调集群的微电网经济调度提供了有效解决方案。
2025-12-01 18:58:58
928
原创 基于CNN(卷积神经网路)-BiLSTM(双向长短期记忆网络)-Attention(注意力机制)的时间序列预测python代码
本文提出了一种基于CNN-BiLSTM-Attention混合模型的时间序列预测方法。该模型通过CNN提取局部时序特征,BiLSTM捕获双向长期依赖关系,并结合Attention机制动态聚焦关键时间步。实验结果表明,该模型在光伏功率预测任务中表现最优(MSE=1.537),相比单一LSTM(1.839)、BiLSTM(1.724)和CNN-BiLSTM(1.612)具有明显优势。模型创新性地融合了多层次特征提取能力,特别适用于处理非线性、长序列的复杂时序数据,在电力负荷、金融波动等场景展现出优异的预测性能和
2025-12-01 18:57:37
1131
原创 【代码分享】输配协同的电动汽车时空双层优化调度/定址选容
摘要:本文提出了一种基于MATLAB平台的电动汽车双层优化调度模型,采用CPLEX/Gurobi求解器实现输配电网协同优化。上层以10机输电网为对象,优化机组组合,综合考虑运行成本、排放、充电费用及弃风惩罚;下层基于IEEE33节点配电网,通过MISOCP优化潮流,最小化网损并确保安全运行。模型通过EV充放电量耦合上下层,利用并行计算实现24时段优化。仿真验证了该策略在提升电网经济性、安全性和促进可再生能源消纳方面的有效性。
2025-11-30 20:58:32
639
原创 【代码分享】基于CNN(卷积神经网络)-BiLSTM(双向长短时记忆网络)-KDE(核密度估计)的多变量时间序列预测
本文提出了一种基于CNN-BiLSTM-KDE的多变量时间序列预测模型。该模型结合CNN提取时空特征,BiLSTM捕捉时序依赖,并创新性地引入KDE进行误差分布建模,实现高精度的点预测和可靠的区间预测。模型支持任意维度的风电、光伏等能源数据输入,自动完成预处理、训练和预测全过程。实验结果表明,该方法在预测精度和不确定性量化方面表现优异,为能源预测等场景提供了端到端的解决方案。
2025-11-30 20:56:57
1846
原创 【原创代码改进】考虑非居民自建共享储能的含蓄热式电采暖用户冬季日前优化调度
摘要:本研究基于Matlab平台构建了考虑非居民用户共享储能与蓄热式电采暖的冬季日前优化调度模型。采用集中式储能投资间接电量共享模式,用户仅支付使用费用。模型以典型日运行成本最优为目标,优化储能容量配置及充放电策略,同时结合蓄热式电采暖的柔性特性,利用ETP模型模拟热传递过程。调度策略通过低谷储热、高峰释热实现经济优化,约束条件包括功率平衡、荷电状态连续性等。研究为三北地区电采暖用户提供了一种兼顾经济性与舒适度的共享储能解决方案。
2025-11-26 22:48:22
427
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅