自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 轻量化卷积

论文原文 :https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf。效果:这种“拆分-变换-融合”的策略,在不损失信息的前提下,极大地压缩了通道维度上的计算成本。分离:利用组归一化的权重,自动判断哪些像素是“信息量大”的,哪些是“没用”的。

2025-12-29 14:08:31 290

原创 航拍小目标检测

COCO 表现:在参数量相当的情况下,MambaNeXt-YOLO 的 mAP 全面超越了 YOLOv8、YOLOv10 和 Gold-YOLO。如果是细节丰富的区域,就多听 CNN 的;如果是需要背景推理的区域,就多听 Mamba 的。效果:这让深层的语义信息能更好地保留下来,特别是对小目标检测非常友好,让小目标也能感知到大背景。现有的实时检测器大多基于 CNN,感受野有限,容易忽略全局背景信息,导致复杂场景下漏检。非对称设计:在自顶向下的路径中,放弃了会丢失信息的最大池化,改用 跨步卷积。

2025-12-26 13:59:05 553

原创 医学图像分割

效果:EFL 模块在频域里进行“频谱门控”,以极低的计算成本实现了全局特征的交互,完美替代了昂贵的 Self-Attention。#计算机视觉 #深度学习 #科研 #医学图像分割 #mamba #科研日常 #论文 #科研学习 #创新点实现 #生物医学科研。更轻:相比于主流的 Transformer 模型(如 Swin-UNETR),EM-Net 的参数量减少了近 50%。CNN(如 U-Net):虽然快,但在“看大图”时视野受限,容易丢失全局形状信息。EM-Net 引入了 Mamba (状态空间模型)。

2025-12-24 14:00:40 340

原创 多模态/双流网络

论文原文 :https://openaccess.thecvf.com/content/CVPR2024/papers/Huang_Bilateral_Event_Mining_and_Complementary_for_Event_Stream_Super-Resolution_CVPR_2024_paper.pdf。BMCNet,虽然它是做事件相机的,但我发现它的核心模块 BIE (Bilateral Information Exchange) 简直是多模态融合和特征修复的神器!

2025-12-22 14:15:57 550

原创 遥感图像处理

视觉对比:在对比图中(Fig 6-8),面对网球场、小船、环岛等难检测目标,ResNet-50 和 PKINet 经常显示“Missing”(漏检),而 LEGNet 都能精准框出“Correct”。抗干扰强:特别是在运动模糊或对比度极低的情况下,LEGNet 依然能保持高置信度,证明了“传统算子+深度学习”在低质量图像上的绝对优势。传统的 CNN(如 ResNet)遇到这种“渣画质”,特征提取就像在猜谜,根本分不清哪里是背景,哪里是物体,导致小目标漏检非常严重。作用:专门对抗噪声。作用:专门对抗模糊。

2025-12-19 14:00:12 606

原创 人工智能创新

葡萄R]Graph以其高效关联分析能力,结合Agent的自主决策优势,完美实现复杂关系的高效推理与动态决策!鉴于如此优势,Graph+AI Agents自然成为了一个高潜力、强创新的研究方向,不仅拥有广泛的应用场景,相对应的学术研究也十分火热。[葡萄R]但在多模态扩展、高效协作、深度推理三方面,这方向仍然存在空白,强推各位论文er关注!值得一提的是,这方向发论文的关键在于提出新颖的智能体协作范式,或解决重要场景中的图谱推理瓶颈。[葡萄R]AI Agent,一个当下科技领域特别火爆的概念。

2025-12-17 14:03:20 418

原创 计算机视觉

ABCNet的核心就是混合架构:利用Transformer的全局注意力来“抑制背景噪声”,利用CNN的卷积归纳偏置来“增强目标特征”,实现去伪存真。视觉效果:对比图显示,ABCNet能完美区分出其他模型容易搞错的“类目标噪声”(False Alarm),误检率极低。机制:采用U型结构,先用空洞卷积(Dilated Conv)扩大感受野过滤残余噪声,再缩小感受野聚焦目标。作用:在特征图分辨率最低的时候,对目标特征进行精细化重构,防止小目标在深层网络中丢失。痛点解决:传统卷积层后,噪声和目标都会被激活。

2025-12-15 14:00:51 513

原创 智能体(Agent)

智能体,也被称为AI代理或智能代理,是一种能够感知环境并作出行动以实现特定目标的计算实体。每天认识一个行业术语,今天我们了解了智能体——AI世界中的多面手。它们将在更多领域展现其潜力,从医疗诊断到灾害响应,智能体将与人类更紧密地合作,提高我们的生活质量。🤖 在人工智能的世界里,有一个术语你可能听说过,但不一定完全了解——智能体(Agent)。挑战:确保智能体的决策过程透明、公正,同时处理复杂的伦理和安全问题。机遇:智能体能够处理大量数据,提高决策效率,创造新的商业模式和服务。

2025-12-11 14:00:29 363

原创 大语言模型

💡每天认识一个AI行业术语:LLM,Large Language Model,即“大语言模型”。 🔍LLM的定义与重要性:LLM 是利用深度学习技术训练的大型语言模型,它们能够处理和理解人类语言的复杂性。这些模型通过分析海量文本数据,学习语言的规律和模式,从而实现语言的生成和理解。 🚀LLM的应用:智能助手:从Siri到小爱同学,LLM 读懂你。自动翻译:打破语言壁垒,让沟通无界限。内容创作:辅助写作,生成创意文案。情感分析:理解用户情绪,提升客户服务体验。 🧠LLM的工作原理:LLM通常基于复杂的

2025-12-09 14:15:25 574

原创 通用人工智能

近年来,随着深度学习、强化学习、自然语言处理等技术的进步,AGI的基础研究取得了显著成果,尤其是在算法创新、数据处理和算力提升方面。通过跨学科的研究,AGI正在逐步实现在不同领域中的应用,包括但不限于医疗诊断、自动驾驶、教育个性化、以及创意工作等,展现出其广泛的适应性和强大的潜力。AGI是指一种具备广泛智能的机器或软件系统,能够在广泛领域内执行任何智能任务,是具备与人类同等智能、或超越人类的人工智能,能表现正常人类所具有的所有智能行为,又称“强人工智能”。

2025-12-07 17:01:35 764

原创 聊天机器人

Chatbot,即聊天机器人,是一种通过文本或语音与人类进行交互的AI程序。Chatbot的核心在于自然语言处理(NLP)技术,它们通过算法解析用户输入的语言,然后从预设的回答库中选择最合适的回答,或者根据机器学习模型生成回答。一些高级的Chatbot甚至能够记住对话历史,提供更加个性化的服务。Chatbot,这个AI行业的小能手,正在悄悄地改变我们的沟通方式。它们不仅能够提供基础的信息查询服务,还能够进行复杂的对话,甚至参与情感交流。未来,Chatbot可能会成为我们日常生活中不可或缺的一部分。

2025-12-04 14:07:20 293

原创 多模态(MultiModal)

🔍多模态的定义:多模态 AI指的是能够处理、分析和理解来自多个不同模态(如文本、图像、声音、视频等)的数据的人工智能系统。这种系统强调不同模态数据之间的互补性和融合性,通过整合多种模态的数据,利用表征学习、模态融合与对齐等技术,实现跨模态的感知、理解和生成。多模态AI的发展标志着从单模态智能向多种模态融合发展的趋势,结合分布式平台的计算能力,实现更高精度的场景构建和对动态场景的处理能力。它涉及传感器技术来捕捉不同模态的数据,并通过模态融合技术整合信息,最终通过学习与推理实现跨模态的理解。

2025-12-02 14:06:16 529

原创 计算机视觉

计算机视觉,就是教计算机如何“看”和“理解”图像与视频的技术。计算机视觉的工作流程就像侦探破案一样:首先收集“证据”(图像采集),然后“分析线索”(数据处理),接着“提取特征”(特征提取),最后“破案”(信息分析)。它不仅在科研领域大放异彩,更在日常生活中发挥着重要作用,让我们的生活更加便捷和安全。计算机视觉,这不仅仅是技术的革新,更是智能时代的一次飞跃。#计算机视觉 #CV #人工智能 #科技趋势 #未来已来 #AI #AI训练师 #人工智能 #ai训练师。医学影像:辅助医生,让诊断更精准。

2025-11-30 17:20:48 870

原创 自然语言处理

NLP就像是AI的“语言老师”,它教会机器如何理解和使用人类的语言。就像我们学习外语一样,NLP让计算机能够“听懂”我们的话,理解我们的文字,甚至还能和我们聊天!NLP,这个AI行业术语听起来可能有点技术,但它其实就在我们身边,每天都在帮助我们更好地与机器沟通。它不仅能理解我们的语言,还能理解我们的意图和情感。这意味着未来的NLP将更加人性化,更能理解我们的需求。在这个信息爆炸的时代,NLP帮助我们更快地获取信息,更有效地沟通。无论是工作还是生活,了解NLP都能让我们更好地利用AI技术,提高效率。

2025-11-28 14:36:19 917

原创 强化学习(Reinforcement Learning, RL)

强化学习是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习最优行为策略,以最大化累积奖励。简单来说,强化学习就是通过试错来学习,智能体根据环境的反馈(奖励或惩罚)调整自己的行为。强化学习是 AI领域中一个极具潜力的方向,已经在多个领域展现出强大的能力。环境(Environment):智能体所处的外部世界,提供反馈和奖励。奖励(Reward):智能体执行动作后从环境中获得的反馈信号。动作(Action):智能体在环境中可以执行的操作。自动驾驶:优化路径规划、动态控制等。

2025-11-26 14:12:12 381

原创 多任务学习(Multi-Task Learning, MTL)

多任务学习(MTL)是一种机器学习范式,旨在通过一个模型同时学习多个相关任务,以提高模型在各个任务上的性能。与传统的单任务学习不同,MTL通过共享模型参数和特征表示,能够更好地利用任务间的相关性,从而提升整体性能。随着深度学习的发展,MTL在自然语言处理、计算机视觉和推荐系统等领域显示出巨大的潜力。它不仅能够提升模型性能,还能在有限的资源下实现更高的效率。💡每天认识一个AI行业术语:多任务学习(Multi-Task Learning, MTL).📖多任务学习的核心优势。🔨多任务学习的应用场景。

2025-11-24 13:53:50 344

原创 神经网络(Neural Network)

神经网络是一种模仿生物神经系统的计算模型,由大量相互连接的节点(神经元)组成,用于处理和学习数据中的复杂模式。它通过输入数据的前向传播和误差的反向传播来调整节点之间的权重,从而实现对数据的分类、回归或其他任务。随着技术的不断进步,神经网络的应用范围将进一步扩大,为我们的生活和工作带来更多便利和创新。前馈神经网络(Feedforward Neural Network, FNN):最简单的神经网络,数据只向前传播。权重(Weights):连接神经元之间的参数,决定了神经元之间的信号强度。🔨神经网络的工作原理。

2025-11-22 12:06:23 254

原创 注意力机制

注意力机制是一种模仿人类视觉注意力的机制,使模型能够识别并集中处理输入数据中最重要的部分,忽略不重要的信息,从而提高处理效率和准确性。它通过动态分配权重,让模型在处理数据时能够聚焦于最关键的信息,类似于人类在观察场景时会不自觉地将注意力集中在最感兴趣的部分,而忽略背景等其他信息。注意力机制的核心在于通过计算查询向量(Query)、键向量(Key)之间的相似度来确定注意力权重,然后对值向量(Value) 进行加权求和,得到最终的输出。📖注意力机制的工作原理。🌟注意力机制的应用场景。🤔什么是注意力机制?

2025-11-21 08:59:06 404

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除