自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 CSS尺寸、盒子模型、定位、浮动与布局(Flex/Grid)

注意:带有-reverse后缀的值会保持布局轴的方向不变(水平/垂直),但反转项目在该轴上的排列顺序(起点变终点,终点变起点)),同时也会反转对齐点(如justify-content: flex-start会变成从右向左对齐)。如果元素A是浮动的,且A元素上一个元素也是浮动的,那么A元素会跟随在上一个元素的后边(如果一行放不下这两个元素,那么A元素会被挤到下一行)。如果A元素上一个元素是标准流中的元素,那么A的相对垂直位置不会改变,即A的顶部总是和上一个元素的底部对齐。自身在常规流中的位置仍然保留。

2025-12-22 17:07:48 233

原创 Skill Discovery | RGSD:基于高质量参考轨迹,预训练 skill space

首先,RGSD(reference guided skill discovery)这篇文章做的是技能发现(skill discovery),即,希望 agent 在没有人工设定奖励的情况下,自己学出一组多样且有意义的技能,以便后续用于各种任务(如走到某处、躲避障碍)。在探索时,RGSD 声称,agent 从一个时间步跳到下一个时间步,可能在潜在空间中产生巨大的、不连续的跳跃(例如,跨过“等高线”组成的山,从一侧跳到另一侧),这违反了 METRA 要求相邻状态潜在距离小于 1 的约束。

2025-12-22 17:06:22 188

原创 变量名越怪,JVM 越快?

但今天读到的一篇文章《Java Performs Better When You Misspell Variable Names》,把这条铁律里的“性能部分”掀了桌:在 Java 的某些栈中,刻意缩短、甚至“错拼”的变量名,可能真的让服务更快。用 JMH 写对照实验,两个版本代码逻辑完全一致,唯一变量是“命名长度与形态”:一个版本用规范、完整、可读的名字,另一个版本把元音删掉、前缀缩短、偶尔把名字变得更随机。毕竟,在工程世界里,漂亮的代码不一定是最快的代码,而我们有时需要的,是能顶住流量的那一段真实提升。

2025-12-21 14:13:41 385

原创 程序员做视频难在哪?可能是文案这一关

你是一位专业的B站内容策划专家,深谙B站用户生态和内容传播规律,擅长创作高互动、高完播率的视频文案。你熟悉各类视频内容形式(知识科普、游戏解说、测评、Vlog、教程等),能够精准把握B站用户的兴趣偏好和弹幕文化。不是让AI随便写点东西,而是按照视频创作的规范流程,生成包括开场、主体内容、结尾、标题、标签等完整内容的脚本。- **视频类型**: [知识科普/游戏解说/产品测评/Vlog/教程/娱乐搞笑/其他]- **Hook开场**: 设计吸引注意力的开头(悬念、痛点、反常识、数据震撼等)

2025-12-21 14:12:36 400

原创 【光照】UnityURP[天空盒]原理与[动态天空盒]实现

‌程序化生成‌:URP支持通过Shader代码动态生成天空盒,例如使用smoothstep函数平滑过渡昼夜状态,基于worldDir.y计算天顶与地平线渐变颜色(如lerp(_DayBottomColor, _DayTopColor, verticalPos))。‌立方体贴图映射‌:天空盒本质是包裹场景的立方体纹理映射,通过六个面的HDR图像(前、后、左、右、上、下)构成全景环境。‌HDRP/URP分化‌:2020年后,URP优化了移动端性能,采用简化版大气散射模型,而HDRP保留物理精确模拟。

2025-12-18 20:59:52 667

原创 Spring Boot 集成分析

加个 spring-ai-starter-vector-store-pgvector 就行。通过 Starter 和 Auto Configuration,用户只需要添加依赖和配置属性,就能使用 AI 能力,无需编写任何配置代码。想用 OpenAI?Spring AI 通过 Spring Boot Starter 和 Auto Configuration 机制,实现了零配置的 AI 应用开发。使用 @ConditionalOn* 注解,让自动配置变得智能,只加载需要的配置,避免不必要的 Bean 创建。

2025-12-17 18:44:59 435

原创 zcash pow equihash算法详解

SLOTBITS:RESTBITS+1+1=12,这个参数定义了一个桶最多能装多少个数据(Slot),总数据量是NHASHES=2x220,桶的总数是210,则平均每个桶会分到2x220/210=211=2048个数据,11正好对应RESTBITS+1,而定义中的第2个+1是除于安全冗余考虑,由于哈希分布是随机的,有的桶数据少,有的桶数据多。假设一个哈希函数有N中可能的输出(比如N=2m),那么只需要计算大约sqrt(N)次哈希,就有相当大的概率找到两个不同的输入产生相同的输出(即发生碰撞)。

2025-12-17 18:44:13 497

原创 从成本中心到战略引擎:揭秘IT团队的五个价值层次,看看你的团队在第几层?

某大型制造企业在CTO的带领下,IT团队主导制定了公司提出的"智能制造"的战略发展目标,通过引入了工业互联网、物联网、大数据等新技术,构建了一套智能化的工厂制造系统,实现生产效率提升了50%,产品质量合格率更是直接提升到99.9%,同时还建立了涵盖供应商、客户、合作伙伴的产业互联网平台,引领了整个行业的数字化转型的发展。我认为,在当前的数字化转型这个大背景之下,IT团队的价值已经不再是只单纯的做技术支持了,而应该是不断地突破,从而达到更有价值的层次,去引领企业的发展。您的计划是怎样的呢?

2025-12-15 11:32:26 254

原创 JuiceFS sync 原理解析与性能优化,企业级数据同步利器

因此,sync 的优化思路是:在单个目录内顺序执行 list,但在多个目录之间并发执行 list,并将各目录的结果汇总成完整的 key 集合。后续的 --exclude 'c*.txt' 虽然根据匹配规则也能匹配上,但是根据完整路径过滤模式的逻辑,一旦匹配上某个模式,后续的模式将不再尝试匹配。在 Producer 阶段,之所以需要同时遍历目标端,是因为 sync 不仅要同步源端数据,还支持按配置删除目标端多余对象,并结合对象在目标端的存在与差异状态,为每个 key 决定生成何种任务。

2025-12-15 11:31:43 864

原创 POSIX兼容系统上read和write系统调用的行为总结

当然这只是理想中的情况,现实是普通文件和硬件设备是两种完全不同的东西,普通文件和网络套接字尤其是UDP协议的那种更是风马牛不相及,强行把这些行为属性完全不同的事物整合进同一套api,导致了read/write/send/recv这几个系统调用的行为极其复杂,bug丛生,更是给很多新手带来了无尽的困扰。终于来到最复杂的套接字了,这里说的套接字包含网络类型为INET和UDS这两种,尽管他们的实现完全不同处理数据的方式也大相径庭,但在read、write、send、recv这些系统调用上的行为是一样的。

2025-12-14 10:14:00 819

原创 前端跨标签页通信方案(上)

平时开发很少有接触到有什么需求需要实现跨标签页通信,但最近因为一些变故,不得不重新开始找工作了,其中就有面试官问到一道题,跨标签页怎么实现数据通信,我当时只答出二种,面试完后特意重新查资料,因此有些文章。这二种是我面试的时候答出来的,第二种我只是模糊记得跟面试官模棱二可的说了说,面试馆给了正面的回应,呵呵……专门用于同源标签页通信的 API,创建一个频道后,所有加入该频道的页面都能收到消息。设置不同的本地存储值才有效,如果设置的是同一个缓存值是不会生效的。// 所有页面都创建相同名称的频道。

2025-12-14 10:13:14 383

原创 面向智能体与大语言模型的 AI 基础设施:选项、工具与优化

优化维度:资源合理配置、使用模式优化、架构优化 核心策略:动态扩缩容(基于需求自动伸缩)、抢占式实例(降低 50%-90%成本)、缓存策略(响应与模型缓存)、批处理(优化 GPU 利用率)、模型优化(量化与剪枝)、多租户(共享基础设施)架构组成:用户输入 → 规划服务(规划层:目标分解、任务优先级排序、资源分配、推理引擎)→ 工具执行(工具生态:搜索 API、数据库访问、代码执行、文件操作)→ 内存管理(工作内存、情景记忆、语义记忆)生成新令牌时,模型仅计算该令牌的 KV 向量,其余向量从缓存中读取。

2025-12-13 17:21:16 301

原创 改善深层神经网络 第一周:深度学习的实践(二)L2正则化

其核心思想是在模型的损失函数中引入一个额外的惩罚项,以限制模型的复杂度,从而避免模型对训练数据“过度学习”而失去对新数据的预测能力。依旧以猫狗分类举例:假设我们的训练集的猫全部都是白猫,那么我们训练拟合到的模型就会认为所有的猫都是白色的,其他颜色的都不是猫,从而错判测试集里的黑猫,橘猫等。因此,Frobenius 范数越大,说明整个权重矩阵的数值越大,也就意味着模型越复杂、越“激进”,就越可能出现过拟合的情况。这时,前沿的人们就会思考,如何在不增加数据的情况下,尽可能地增加模型泛化性,缓解过拟合问题?

2025-12-13 17:20:29 440

原创 改了 Nacos 一行配置,搞崩线上支付系统!

一顿排查后发现致命配置错误。持久化实例则完全相反,它针对长期稳定运行、很少变化的基础服务(如 MySQL、Redis、Elasticsearch)设计,核心逻辑是服务端主动探活 + 数据持久化,不适合支付、订单这类动态业务服务。这个面试场景题总问,不过很多同学对 Nacos 临时、持久实例的认知,只停留在服务会不会消失的表面,什么时候该用临时,什么时候该用持久,适用场景是什么,没太明白。Nacos 配置中心的所有配置实例(即配置文件)默认都是持久化的,根本不存在临时配置的概念,所谓的动态更新也和临时无关。

2025-12-12 10:26:43 275

原创 ETEGRec:端到端可学习的物品分词与生成式推荐

值得注意的是,TIGER-SAS 与 TIGER 表现接近,表明协同与文本语义均对效果有重要贡献。现有生成式推荐多采用"两阶段"范式:先离线构造语义标识(Semantic ID),再以固定标识训练生成器,导致分词器与生成器目标失配、分布不一致。在 Amazon-2023 三个子集上,ETEGRec 相比传统序列模型与主流生成式基线均取得稳定提升,消融实验验证了对齐与交替优化的有效性。结果表明,ETEGRec 的改进不仅来源于更优的物品标识符,还得益于将分词器中编码的先验知识与生成式推荐器进行一体化融合。

2025-12-12 10:25:38 369

原创 04-FreeRTOS的概述及编程规范

TaskHandle_t Handle_t(句柄) 任务句柄(本质是指向TCB_t结构体的指针),用于操作任务(如vTaskSuspend(TaskHandle_t))。TickType_t Tick(时基) 用于表示系统时基( ticks )的类型(通常是uint32_t),如vTaskDelay()的参数类型。pd Portable Define(可移植定义) pdTRUE(真)、pdFALSE(假)、pdPASS(成功)、pdFAIL(失败)。

2025-12-11 09:32:13 616

原创 Rust/C/C++ 混合构建 - Cmake集成Cargo编译动态库

如果要调用Cargo构建Rust编译的动态库,并且通过cmake作为构建工具统一调度,目前主流方案是使用Cmake内置的add_custom_target模块调用Cargo构建。add_library和set_property 将生成的动态库绑定到rust_lib 这个target上,最后将动态库rust_lib通过。add_custom_target调用Cargo将src/lib.rs 编译成动态库,为了方便将Cargo的构建目录指定在当前项目下。3、创建call_rust.c,内容如下。

2025-12-11 09:31:17 273

原创 屏幕上那一行刺眼的红色 `Time Limit Exceeded`,是不是你我再熟悉不过的场景?

我们知道,暴力的双重循环 O(n^2) 肯定不是最优解,但思路卡壳时,那个更优的 O(n log n) 甚至 O(n) 解法,却像隔着一层窗户纸,怎么也捅不破。关注“为什么”而非“是什么”:优化后的代码(是什么)很容易获得,但其背后的原理(为什么)才是我们能力增长的关键。看到这份回答,我们不仅得到了优化后的代码,更重要的是,我们清晰地看到了优化的逻辑推演过程、复杂度对比以及健壮性考量。这时,如果我们只是简单地把代码扔给AI,它可能会直接给出最终代码,但我们对“为什么”的理解仍然是模糊的。

2025-12-10 09:38:12 226

原创 深入理解MCP:AI 应用与外部世界的桥梁

用户在 Cursor(Host)中配置了一个新的 MCP Server。Host 映射工具为 LLM 可调用格式: Host 接收到 MCP Server 返回的工具列表后,将这些工具的元数据转换成 LLM(如 OpenAI 的 Function Calling 机制)可以理解和调用的 tools 格式。mcp实际就是提供了一种标准化的访问外部数据源的方式,他能做的插件也能做,但是插件与模型厂商挂钩,协议格式各不相同,对接复杂,mcp简化了这种流程,且更加开放 标准了 别人写好了mcp工具我们直接就能用。

2025-12-10 09:37:05 260

原创 DFAT—Dual Focus-Attention Transformer for Robust Point Cloud Registration

这里将上采样的和刚刚我们经过筛选的粗匹配点对作为输入,这里首先使用Point Focus-Attention,即通过超点对应附近的点间注意力操作来编码局部上下文信息,否则即使超点对应正确,点特征也可能因为缺乏局部上下文信息而生成错误对应,这里使用的注意力是线性注意力,避免过多的计算量。首先来讲针对粗匹配的超点聚焦注意力机制。这个算法是为了解决硬匹配的局限性而出现,比如存在一种情况,源点云的点A和点B和目标点云的点X相似度都较高,那么就会出现两个点对应这个点的情况,而sinkhorn则可以解决此问题。

2025-12-09 17:14:01 337

原创 ROS2概述和环境搭建

为了解决这个问题,ROS2设计了一个ROS Middleware,简称RMW,也就是指定一个标准的接口,比如如何发数据,如何收数据,数据的各种属性如何配置,都定义好了,如果厂家想要接入ROS社区,就得按照这个标准写一个适配的接口,把自家的DDS给移植过来,这样就把问题交给了最熟悉自家DDS的厂商。中间层是ROS封装好的标准通信接口,我们写程序的时候,会频繁和这些通信接口打交道,比如发布一个图像的数据,接收一个雷达的信息,客户端库会再调用底层复杂的驱动和通信协议,让我们的开发变得更加简单明了;

2025-12-09 17:13:15 781

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除